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Preface

Hardly anyone reads a Preface. Please read this one, because this book is a
bit different and what is written here is the actual introduction to the book.
I never read a textbook that I really liked when I was a student. The main
reason is that most authors seemed more interested in presenting the infor-
mation with the goal of impressing colleagues rather than instructing the
reader as a student of the subject. For a long time, I thought they were so
smart that they could not relate to the ordinary student. I now know that is
rarely true. You should know that I have reached a point in my career
where no one is important enough that I need to impress, and certainly no
money is to be made writing a textbook. My reason for accepting the task
of writing this text is that I truly wanted to attempt to explain this subject in
an understandable manner to the many petroleum engineers who need or
want to understand it but at best received a couple of classroom lectures
and a homework assignment on the subject from someone who never
designed or ran a real string of casing in his life. I was in that same position
some 44 years ago. This book is also intended for those coming into the oil
field from other disciplines and needing to understand casing design.

This book is not written in the style of most textbooks. That is
because it its main purpose is to teach you, the reader, about casing and
casing design without need of an instructor to “explain” it to you. I would
like you to read this as if you and I were sitting down together as I explain
the material to you. While some of the material requires a little formality,
I have tried to put it on a readable level that progresses through the various
processes in a logical manner. I have also tried to anticipate, pose, and
answer some of the questions you might ask in the process of our
discussion.
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The first five chapters of this book lay a foundation in basic casing
design. It is, if you will, a recipe book for basic casing design. It does go
into some detail at times, but overall its purpose is to actually teach an
understanding of basic casing design. If you are not an engineer, and
many casing strings are designed by nonengineers, do not be discouraged
by the many equations you see. The information in this part should be suf-
ficient to design adequate casing strings for the vast majority of the wells
drilled in the world, and although the chapter on hydrostatics contains
some calculus, none of it is beyond the capabilities of a second-year engi-
neering student. The sixth chapter is about running and landing casing.
Most of it is common sense, but there are some practical insights that are
worth the time it takes to read.

Chapter 7 begins the discussion of slightly more advanced material.
Some of this material is not covered in universities, except on a graduate
level, but I have tried to present it so that any undergraduate engineering
student should be able to understand it. The remaining chapters continue
in the same vein.

I have not tried to cover everything about casing or casing design in
this book. I have never had any aspirations of writing the definitive text on
casing or any other subject, mostly because some aspects hold no interest
at all for me. I have personally run and cemented close to a couple of hun-
dred casing strings as a field drilling engineer, designed several hundred
more, and been involved with several thousand casing strings over my
career. These have ranged from very shallow strings to a few over 23,000
ft. Never have I designed a string for a geothermal well, and my corrosion
and sour gas experience is limited. Consequently, little is said about those
subjects in this book. There are much better sources for that than what I
could write on those particular topics. 

Opinions: you will note that there are a few opinions in this text. You
will easily recognize them. My meager defense is that they come from
experience, much of it unpleasant. You are free to disagree.

Errors: Anyone who has ever written a book or had a paper pub-
lished has been humbled by the appearance of errors that have somehow
mysteriously materialized in the carefully written and edited work.
While I and the editors tried diligently to ferret them out of this book, I
know they are present. I apologize in advance. May you derive pleasure
in discovering them.

Information or Knowledge: finally, one should understand that what
we now call the information age is fast becoming an age of ignorance.
Make no mistake; information is not knowledge. Knowledge connotes
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understanding, and information alone is of little value without under-
standing. Daily we are barraged with analysis of information with no per-
ception of understanding. Now that we rely heavily on computers, we often
do something comparable with casing design. We plug in some numbers,
and out comes a multipage page printout of the results. If you do not under-
stand it, and many do not, then it is merely information. Are you going to
trust it? It is of little solace to know that the people who wrote the software
understand it. It is my best hope that this book will lend a bit to a better
overall understanding of this one small topic. If some of my explanations
are not perfectly lucid; you have my permission to read them more than
once; no one else will ever know.
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CHAPTER 1

Oil-Field Casing

1.1 Introduction
We begin with a chapter on the usual obligatory information for a book on
oil-field casing. The real book starts in Chapter 2, but in the rare case that
the subject is totally new to you, you will find a rudimentary coverage of
what casing is in this chapter. The steel tubes that become a permanent
part of an oil or gas well are called casing, and the tubes that are remov-
able, at least in theory, are referred to collectively as tubing which are not
covered in this book. Oil-field casing is manufactured in various diame-
ters, wall thicknesses, lengths, strengths, and with various connections.
The purpose of this text is to examine the process of selecting the type and
amount we need for specific wells. But first, a question: What purpose
does casing serve in a well? There are three:

• Maintain the structural integrity of the bore hole.

• Keep formation fluids out of the bore hole.

• Keep bore hole fluids out of the formations.

It is as simple as that, though we could list many subcategories under each
of those. Most are self-evident. Additionally, there are some cases where
the casing also serves a structural function to support or partially support
some production structure, as in water locations.
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1.2 Setting the Standards
By necessity oil-field tubulars are standardized. Until recent times, the
standards were set by the American Petroleum Institute (API) through
various committees and work groups formed from personnel in the
industry. Now, the International Organization for Standardization (ISO) is
seen as taking on that role. Currently, most of the ISO standards are
merely the API standards, but that role may expand in the future. In this
text, we refer primarily to the API standards, but it should be understood
that there are generally identical standards, and in some cases more
advanced standards, under the ISO name.

It is important that some degree of uniformity and standardization is
in force and that manufacturers be held to those standards through some
type of approval or licensing procedure. In times of casing supply short-
ages, a number of manufacturers have entered the oil-field tubular market
with substandard products. Some of these have led to casing failures
where no failure should have occurred. The important point here is that
any casing purchased for use in oil or gas wells should meet the current
standards as set for oil-field tubulars by the API or ISO.

Some casing is not covered by API or ISO standards. Some of this
non-API casing is for typical applications, some for high-pressure appli-
cations, high-temperature applications, low-temperature applications, and
some for applications in corrosive environments. Most of this type of
casing meets API standards or even higher standards, but one must be
aware that the standards and quality control for these types of casing are
set by the manufacturer. It probably should not be mentioned in the same
paragraph with the high-quality pipe just referred to, but it should also be
remembered that there are some low-quality imitations of API products
on the market as well. 

1.3 Manufacture of Oil-Field Casing
There are two types of oil-field casing manufactured today: seamless and
welded. Each has specific advantages and disadvantages.

1.3.1 Seamless Casing
Seamless casing accounts for the greatest amount of oil-field casing in use
today. Each joint is manufactured in a pipe mill from a solid cylindrical
piece of steel, called a billet. The billet is sized so that its volume is equal
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to that of the joint of pipe that will be made from it. The manufacturing
process involves

• Heating the billet to a high temperature.

• Penetrating the solid billet through its length with a mandrel such 
that it forms a hollow cylinder.

• Sizing the hollow billet with rollers and internal mandrels.

• Heat treating the resulting tube.

• Final sizing and straightening.

The threads may be cut on the joints by the manufacturer or the plain-end
tubes may be sent or sold to other companies for threading. The most dif-
ficult aspect of the manufacture of seamless casing is that of obtaining a
uniform wall thickness. For obvious reasons, it is important that the inside
of the pipe is concentric with the outside. Most steel companies today are
very good at this. A small few are not, and that is one reason that API and
ISO standards of quality were adopted. Current standards allow a 12.5%
variation in wall thickness for seamless casing. The straightening process
at the mill affects the strength of the casing. In some cases, it is done with
rollers when the pipe is cool and other cases when the pipe is still hot.
Seamless casing has its advantages and also a few disadvantages.

• Advantages of Seamless Casing.

• No seams to fail.

• No circumferential variation of physical properties.

• Disadvantages of Seamless Casing.

• Variations in wall thickness.

• More expensive and difficult manufacturing process.

1.3.2 Welded Casing
The manufacturing process for welded casing is quite different from that of
seamless casing. The process also starts with a heated steel slab that is rect-
angular in shape rather than cylindrical. One process uses a relatively small
slab that is rolled into a flat plate and trimmed to size for a single joint of
pipe. It is then rolled into the shape of a tube and the two edges are electri-
cally flash welded together to form a single tube. Another process uses elec-
tric resistance welding (ERW) as a continuous process on a long ribbon of
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steel from a large coil. The first stage in this process is a milling line in the
steel mill:

• A large heated slab is rolled into a long flat plate or ribbon of 
uniform thickness.

• Plate is rolled into a coil at the end of the milling line.

The large coils of steel “ribbon” are then sent to the second stage of the
process, called a forming line.

• Steel is rolled off the coil and the thickness is sized.

• Width is sized to give the proper diameter tube.

• Sized steel ribbon is formed into a tubular shape with rollers.

• Seam is fused using electric induction current.

• Welding flash is removed.

• Weld is given an ultrasonic inspection.

• Seam is heat treated to normalize.

• Tube is cooled.

• Tube is externally sized with rollers.

• Full body of pipe is ultrasonically inspected.

• Tube is cut into desired lengths.

• Individual tubes are straightened with rollers.

This is the same process by which coiled tubing is manufactured, except
coiled tubing is rolled onto coils at the end of the process instead of being
cut into joints. Note that, in the welding process, no filler material is used;
it is solely a matter of heat and fusion of the edges.

Welded casing has been available for many years, but there was an
initial reluctance by many to use it because of the welding process.
Welding has always been a matter of quality control in all applications,
and a poor-quality weld can lead to serious failure. Today, it is both
widely accepted and widely used for almost all applications except high-
pressure and/or high-temperature applications. It is not used in the higher
yield strength grades of casing.
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• Advantages of Welded Casing.

• Uniform wall thickness.

• Less expensive than seamless.

• Easier manufacturing process.

• Casing is inspected during manufacturing process (ERW) and 
the defective sections removed.

• Uniform wall thickness is very important in some 
applications, such as the newer expandable casing.

• Disadvantages of Welded Casing

• High temperatures of welding process.

• Possible variation of material properties due to welding.

• Possible faulty welds.

• Possible susceptibility to failure in weld.

Welded casing has been used for many years now. Many of the so-called
disadvantages are perhaps more a matter of perception than actuality.

1.3.3 Strength Treatment of Casing
When a cast billet or slab is formed into a tube it is done at quite high tem-
perature. The deformation that takes place in the forming process is in a
plastic or viscoplastic regime of behavior for the steel. As it cools its crys-
talline structure begins to form. Once the crystalline structure forms or
begins to form, any additional plastic deformation to which we subject the
tube will change its properties. The change may be minor or significant,
depending on the constituents of the steel, the amount of deformation, and
the temperature. Heating a tube above certain temperatures and cooling
slowly allows the crystals to form more uniformly with fewer structural
imperfections, called dislocations, in the lattice structure. The properties
of the steel can modified by the addition of certain constituents to the
alloy and, to some extent, by controlling the cooling rate. One common
process for enhancing the performance properties of casing is to heat the
tube above a certain temperature then quickly cool it by spraying it with
water or some other cool fluid to change its properties, especially near the
surface. This process is called quench and temper, or QT for short, and is
an inexpensive alternative to adding more expensive alloys.

Some steels are said to get “stronger” when they are deformed plasti-
cally at ambient temperatures. This is part of the manufacturing process in
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some steels and is called cold working. Cold working typically increases the
steel’s yield strength, however it does not, in general, increase the ultimate
strength. Straightening casing joints in the latter stages of the manufacturing
process can also have an effect on the properties of the tube depending on
whether it is done at “cool” temperatures or “warm” temperatures.

1.4 Casing Dimensions
Casing comes in odd assortment of diameters ranging from 4½-in. to
20-in. that may seem quite puzzling at first encounter, such as 5½-in.,
7-in., 7⅝-in., 9⅝-in., 10¾-in. Why such odd sizes? All we can really
say about that is that they stem from historical sizes from so far back
that no one knows the reasons for the particular sizes any longer. Some
sizes became standard and some vanished. Within the different sizes,
there are also different wall thicknesses. These different diameters and
wall thicknesses were eventually standardized by the API (and now
ISO). The standard sizes as well as dimensional tolerances are set out
in API Specification 5CT (2001) and ISO 11960 (2004).

1.4.1 Outside Diameter
The size of casing is expressed as a nominal diameter, meaning that is the
designated or theoretical diameter of the pipe. API and ISO allow for
some tolerance in that measurement, and the specific tolerance differs for
different size pipe. The tolerance for the pipe being under sized is typi-
cally less than for the pipe being oversized. This is to ensure that the
threads cut in the pipe are full threads. The tolerances for non-upset
casing 4½ in. and larger are given as fractions of the outside diameter,
+0.01do, –0.005do. For upset casing, Table 1–1 shows the current API and
ISO tolerances measured 5 in. or 127 mm behind the upset. 

Table 1–1 API/ISO Tolerances for Upset Casing Outside Diameter (API 5CT, 
ISO 11960)

Nominal Outside 
Diameter, do (in.)

Tolerances (in.) Tolerances (mm)

+ – + –

 >3½ to 5 7/64 0.0075do 2.78 0.0075do

>5 to 8⅝ ⅛ 0.0075do 3.18 0.0075do

>8⅝ 5/32 0.0075do 3.97 0.0075do
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1.4.2 Inside Diameter and Wall Thickness
The inside diameter of the casing determines the wall thickness or vice
versa. Rather than a specific tolerance for the amount at which the internal
diameter might exceed a nominal value, the tolerance specified by API
and ISO is given in terms of minimum wall thickness. The minimum wall
thickness is 87.5% of the nominal wall thickness. The maximum wall
thickness is given in terms of the nominal internal diameter, however. It
specifies the smallest diameter and length of a cylindrical drift mandrel
that must pass through the casing (see Table 1–2). 

The internal diameter of casing is a critical dimension. It determines
what tools and so forth may be run through the casing. It is not uncommon
to have to select a casing for a particular application such that the drift
diameter is less than the diameter of the bit normally used with that size
casing, even though the bit diameter is less than the nominal internal diam-
eter of the pipe. In cases like this, it is a practice to drift the casing for the
actual bit size rather than the standard drift mandrel. This may be done
with existing pipe in inventory, and those joints that will not pass the bit are
culled from the proposed string. Or it may be done at special request at the
steel mill, in which case there will be an extra cost. This procedure applies
only to casing where the desired bit diameter falls between the nominal
internal diameter and the drift diameter of the casing.

1.4.3 Joint Length
The lengths of casing joints vary. In the manufacture of seamless casing,
it all depends on the size of the billet used in the process. Usually, there
is some difference in weight of the billets, and this results in some varia-
tion in the length of the final joints. One could cut all the joints to the
same length, but that would be a needless expense and, in fact, would not
be desirable. (Wire line depth correlation for perforating and other opera-
tions in wells usually depends on an electric device to correlate the

Table 1–2 Minimum Drift Mandrel Dimensions (API Spec 5CT, ISO 11960)

Casing Outer Diameter 
(in.)

Mandrel Length Mandrel Diameter

< 9⅝ 6 in. 152 mm di = ⅛ in. di = 3.18 mm

9⅝ to 13⅜ 12 in. 305 mm di = 5/32  in. di = 3.97 mm

>13⅜ 12 in. 305 mm di = 3/16  in. di = 4.76 mm
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couplings with a radioactive formation log; so if all the joints are the
same length, it can cause errors in perforating or packer setting depths.)
For ERW casing, it is much easier to make all of the joints the same
length, but there may still be some waste if that is done. Even if the joints
vary in length, they need to be sorted into some reasonable ranges of
lengths for ease of handling and running in the well. Three ranges of
length are specified by API Recommended Practices 5B1 (1999), Ranges
1, 2, and 3 (see Table 1–3). 

Most casing used today is in either Range 2 or 3, with most of that
being Range 3. Range 1 is still seen in some areas where wells are very
shallow, and the small rigs that drill those wells cannot handle longer
pipe.

1.4.4 Weights of Casing
The term casing weight usually refers to the specific mass of casing
expressed as mass per unit length, such as kg/m or lb/ft. The use of the
term weight is so common that we are going to use that term for now, but
it should be understood that we are not talking about weight but mass. In
Chapter 2, we discuss this more thoroughly. So the casing weight is deter-
mined by the density of the steel and the dimensions of the casing body.
For instance, we may have a joint of 7-in. 26 lb/ft casing. We might rea-
sonably assume from that that our joint actually weighs 26 lb/ft. Our
assumption would be wrong. This is the nominal casing weight not the
actual weight. For some reason, the nominal weight of casing is based on
a joint that is 20 feet in length. It includes the weight of the plain-end pipe
plus the weight of a coupling, minus the weight of the casing cut away to
make the threads on each end and divided by 20 feet to give the nominal
weight in terms of pounds per foot (or kilograms per meter). In other
words, casing almost never weighs the same as its nominal weight. Fortu-
nately the difference is small enough that in most cases it does not really
matter. API Spec 5CT has formulas for calculating the actual weight of a
joint, but it requires specification of the thread dimensions and so forth,

Table 1–3 Length Ranges of Casing (API RP 5B1, 1999)

Range 1 Range 2 Range 3

(ft) (m) (ft) (m) (ft) (m)

16 to 25 4.88 to 7.62 25 to 34 7.62 to 10.36 34 to 48 10.36 to14.63
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and we are not going to concern ourselves with that here. One particular
formula in API Spec 5CT or ISO 11960 sometimes is useful though, and
that is the formula for calculating the nominal casing weight of the plain
pipe without threads or couplings:

(1.1)

where

w = plain-end “casing weight,” mass per unit length, lb/ft or kg/m.

C = conversion factor, 10.69 for oil-field units; 0.0246615 for 
metric units

do = outside diameter, in. or mm.

di = inside diameter, in. or mm.

t = wall thickness, in. or mm.

These formulas appear in several API/ISO publications accompanied by a
statement that martensitic chromium steels (L-80, Types 9Cr and 13Cr)
have densities different from carbon steels and a correction factor of 0.989
should be applied. Interestingly though, the density of carbon steel is
nowhere to be found in those publications except by backing it out of
these formulas. From these formulas, the density of API carbon steel is
490 lb/ft3 or 7850 kg/m3. Again, we discuss units of measure, mass and
weight, and so forth in Chapter 2.

1.5 Casing Grades
Casing is manufactured in several different grades. Grade is a term for
classifying casing by strength and metallurgical properties. Some of the
grades are standardized and manufacture is licensed by the API; others
are specific to the particular manufacturer.

w C d t t

w C
d d

o

o i

= −( )

= −⎛
⎝⎜

⎞
⎠⎟

or

2 2

4



10 Chapter 1—Oil-Field Casing

1.5.1 API Grades
The API grades of casing are manufactured under a license granted by the
API. These grades must meet the specifications listed in API Spec 5CT
(2004) or ISO11960. These grades have yield strengths ranging from
40,000 lbf/in.2 to 125,000 lbf/in.2. These grades are listed in Table 1–4.

The letter designations are essentially arbitrary, although there may
be some historical connotation. The numbers following the letters are the
minimum yield strengths of the metal in 103 lbf/in.2. The minimum yield
strength is the point at which the metal goes from elastic behavior to
plastic behavior. And it is specified as a “minimum,” meaning that all
joints designated as that particular grade should meet that minimum
strength requirement, although it is allowed to be higher. Typically, we
use the minimum yield strength as the design limit in most casing design.
The yield strength also may be higher than the minimum, and a maximum
value also is listed in the table. The reason for the maximum value is to
assure that the casing sold in one particular grade category does not have
tensile and hardness properties that may be undesirable in a particular
application. Some years back, it was common practice to downgrade pipe
that did not meet the minimum specifications for which it was manufac-
tured. In other words, if a batch of casing did not meet the minimum spec-
ifications for the grade it was intended, it could be downgraded and sold
as the next lower grade. There also were cases where one grade was sold
as the next lower grade to move it out of inventory. Some of the conse-
quences of this practice were disastrous. One typical example was the use
of N-80 casing for tieback strings and production strings in high-pressure
gas wells in the Gulf Coast area of the United States. Many of these wells
drilled in the 1960s used lignosulfonate drilling fluids and packer fluids,
which over time degraded to form hydrogen sulfide (H2S). As it turned
out, some wells that were thought to have N-80 grade casing, actually had
P-110, and there were a number a serious casing failures due to hydrogen
embrittlement. Many of these “N-80” casing strings had P-110 grade cou-
plings on them, and in some wells almost every coupling in the entire
string cracked and leaked. 

You will also notice in the chart that some different grades have the
same minimum yield strength. Again, this is a case where the metallurgy
is different. For instance both N-80 and L-80 have a minimum yield
strength of 80,000 lbf/in.2, but their other properties are different. L-80
has a maximum Rockwell hardness value of 22 but N-80 does not. N-80
actually might be a down-rated P-110 but L-80 cannot be. The grades
with the letter designation L and C have maximum hardness limitations
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and are for specific applications where H2S is present. Those hardness
limits are also shown in the table.

The ultimate strength value listed is the minimum strength of the
casing at failure. In other words, it should not fail prior to that point. This
is based on test samples and does not account for things like variations in
wall thickness, pitting, and so forth. It is not really possible to predict
actual failure strength, because there are too many variables, but this value
essentially means that the metal should fail at some value higher than the
minimum. Also shown in the table are values for minimum elongation.
This is specified as the minimum percent a flat sample will stretch before
ultimate failure. When you consider that K55, for instance, yields at an
elongation of 0.18%, then you can imagine that nearly 20% elongation is
considerable. But one should not be misled into thinking that, if we design
casing with the yield strength as a design limit, there is necessarily a con-
siderable additional “strength” remaining before the casing actually fails.

Table 1–4 API Casing Grades, Tensile Strength and Hardness Specifications 
(API Spec 5CT, 2001)

Grade

Yield Strength (ksi)
Minimum Tensile 

Strength (ksi)

Hardness

Minimum Maximum HRC
HBW/
HBS

H-40 40 80 60

J-55 55 80 75

K-55 55 80 95

N-80 80 110 100

M-65 65 85 85 22 235

L-80 80 95 95 23 241

C-90 90 105 100 25.4 255

C-95 95 110 105

T-95 95 110 105 25.4 255

P-110 110 140 125

Q-125 125 150 135
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Once the material is loaded beyond the elastic limit (yield) the incre-
mental stress required to stretch it to failure can often be quite small. We
discuss more on plastic behavior in Chapter 7.

1.5.2 Non-API Grades
Non-API grades of casing are not licensed by the API and consequently
do not necessarily adhere to API or ISO specifications. This is not to
imply that they are inferior, in fact, the opposite is true in many cases.
Most non-API grades are for specialized applications to meet require-
ments not covered in the API or ISO specifications. Examples are high-
temperature and or high-corrosive environments and high-collapse and
tensile-strength requirements. In these cases, one must rely on the
specifications, quality control, and reputation of the manufacturer. For
extremely critical wells, many operators elect to do a number of qualifica-
tion tests and inspections on the specific casing that will be used in a par-
ticular application. For instance, one operating company has invested a
very large amount of money and research into qualifying connections for
use in high-pressure wells (Valigura and Cernocky 2005).

It should also be mentioned that a number of manufacturers make
casing that supposedly meets API/ISO specifications but are not licensed
to do so. Typically, this casing is sold below the market price for API/ISO
casing. While some of this pipe has been found to be acceptable, much of
it is not. This was a particular problem in the late 1970s, when the demand
for casing far exceeded the supply, and similar situations reoccur from
time to time. It is a case of “buyer beware.” 

1.6 Connections
Many types of connections are used for casing. These are threaded con-
nections, and there are three basic types: coupling, integral, and weld-on. 

The most common type is a threaded pipe with couplings. A plain joint
of pipe is threaded externally on both ends and an internally threaded cou-
pling, or collar as it is sometimes called, joins the joints together. A
coupling usually is installed on one of the threaded ends of each joint imme-
diately after the threads are cut. The end of the coupling that is installed at
the threading facility (usually at the steel mill) is called the mill end. The
other end of the coupling typically is called the field end, since it is con-
nected in the field as the casing is run into the well. An integral connection
is one in which one end of the pipe is threaded externally (called the pin
end) and the other end is threaded internally (called the box end). The joints
are connected by screwing the pin end of one joint into the box end of
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another. In most cases, an integral connection requires that the pipe body be
thicker at the ends to accommodate both internal and external threads and
still have a tensile strength reasonably close to that of the pipe body. The
increased wall thickness in this case is called an upset, and it may be an
increase of the external diameter, external upset (EU), a reduction in the
internal diameter, internal upset (IU), or a combination of both (IEU). Most
integral joint casing is externally upset, so as to have a uniform internal
diameter to accommodate drilling and completion tools. Finally, the weld-
on connection is one in which the threaded ends are welded onto the pipe
instead of being cut into the pipe body itself. This type of connection
typically is used for large-diameter casing (20 in. and more), where the dif-
ficulty of cutting threads on the pipe body becomes more pronounced due
to the large size, uniformity of diameter, and roundness.

Of the three types of connections mentioned, there are also different
ways in which threaded connections bring about a seal. These primary
sealing methods are interference and metal-to-metal seals.

Interference sealing relies on the compression of the individual threads
against one another to cause a seal. Typically, this is the sealing mecha-
nism of “V” or wedge-shaped threads that are forced tight against one
another as the connection is made. The threaded area is tapered so that the
more it is made up the greater the contact force between the threads due to
the circumferential stress in the pin and box. Despite all the force though,
interference alone does not cause a total seal, because there has to be some
tolerance in the thread dimensions for the connections to be made. There
always is some small gap in the cross-sectional profile of a connection. In
the case of wedge-shaped threads, there is a small gap between the crest of
one thread and the valley of the other. These connections require a thread
lubricant to fill this small gap and effect a true seal. For that reason, it is
necessary to use a good-quality thread lubricant. Another aspect of this
type of seal is that the contact force must be great enough to resist any
pressure force tending to press fluids into the contact area.

Metal-to-metal seals rely on the contact of metal surfaces other than
the threads to cause a seal. This may be a tapered surface on the pin and
box that contact each other in compression, a shoulder contact, or a com-
bination of the two. These types of seals are strictly metal-to-metal
contact and do not rely on thread lubricant to bring about the seal. For this
reason, it is extremely important that the connections are protected during
handling and running to avoid damaging the seal surfaces. And, since
these seals are also dependent on the compression of the metal surfaces,



14 Chapter 1—Oil-Field Casing

the type of thread lubricant is important to achieve the desired makeup
torque.

There is a secondary type of sealing mechanism, called resilient seals
or rings. Resilient seals typically are polymer rings inserted into a special
recess in the threaded area to provide additional seals to keep gas or cor-
rosive fluids out of the thread gaps. They usually are not considered a pri-
mary seal but only an additional seal to improve the quality of an
interference seal or a corrosion prevention mechanism for some metal-to-
metal seals.

1.6.1 API 8-rd Connections
The most common type of casing connection in use is the API 8-rd con-
nection, where 8-rd means 8-round or eight threads per inch and a slightly
rounded profile. The profile is a V or wedge-shape but slightly rounded at
the crest and valleys of the threads. There is also an API 11½-V thread,
which has 11½ threads per inch and a sharp V profile. This typically is
called a line pipe thread and is seldom used in down-hole applications
today. The API 8-rd connection is made in either ST&C (short thread and
coupling) or LT&C (long thread and coupling). These two threads are the
workhorses of the industry and sufficient for most normal applications.
Like most connections, these are not as strong in tension as the pipe body
itself because of the reduced net cross-sectional area of the tube, resulting
from the threads being cut into the pipe body wall in the absence of an
upset. These are interference-seal-type connections. The threads are
wedge-shaped, cut on a tapered profile, and made up until a prescribed
torque is attained. At full makeup torque, the threads do not achieve a
pressure seal, because the threads do not meet in the base of the groove,
leaving two small channels at the base of the thread in both pipe and the
coupling. How then do they seal and prevent pressure leaks? They form a
pressure seal with the use of thread lubricant that fills the voids between
the thread roots. The gap is very small and its length is quite long due to
the number of turns at a pitch of eight per inch, so the lubricant forms a
good seal in most cases. However, one must always use an approved
thread lubricant, one that ages and shrinks in time and temperature even-
tually will leak. Although these connections often are used in gas well
applications, they generally are not recommended, because they rely on
the thread lubricant for a seal. Another precaution is that because the
threads are wedge shaped, they tend to override each other when sub-
jected to high tension or compression. This override mechanism is often
referred to as jump out. Because of this jump out tendency, ST&C and
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LT&C connections generally are not recommended for wells that have
high bending stress due to well-bore curvature or applications where tem-
perature fluctuations cause high axial tensile and compressive loads.

1.6.2 Other Threaded and Coupled Connections
A number of types of threaded and coupled connections have different
profiles from the API 8-rd. Instead of wedge-shaped threads, many have a
square profile or something similar to give them greater tensile and
bending strengths. Examples of this type of thread is the Buttress (now an
API thread), 8-Acme, and the like. These threads typically are used where
higher tensile strengths are needed in the joints. In general, they also rely
on thread lubricant to form a seal and are prone to leak in high-pressure
gas applications. Most of these connections require less makeup torque
than API 8-rd connections. This is an advantage but also can be a disad-
vantage, because the maximum makeup torque usually is less than that
required to rotate the casing in the hole. Where rotation is planned for
cementing or orienting precut windows for multilateral wells, these types
of connections are to be avoided. Also, because the makeup torque is rela-
tively low, most of these joints have a “makeup mark” on the pipe. When
the pipe is made up properly, the coupling is aligned with the makeup
mark. If the maximum torque is attained before the coupling reaches the
makeup mark, it is an indication that the thread lubricant is the wrong
type, the connections have not been properly cleaned, the pipe is not
round, or the connection has been damaged. If the makeup mark is
reached before the optimum torque is achieved, that is an indication the
connections are either worn or the threads were not properly cut.
Although not as common, some threaded and coupled pipe also has
metal-to-metal seals. 

1.6.3 Integral Connections
Another type of connection used for casing is one in which a metal-to-
metal seal is achieved that is independent of the threaded area. These usu-
ally are integral-type connections cut into both ends of the pipe with no
separate coupling. Some have a smooth tapered seal that seats very tightly
when the proper makeup torque is achieved, others have a shoulder type
seal, and as mentioned previously, still others have a combination of both.
These types of connections give both high tensile strengths (some greater
than the pipe body itself), greater bending strengths for curved well bores,
and greater pressure sealing for high-pressure gas wells. Some of these
threads may be cut in non-upset pipe for use as liners, typically called
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flush-joint connections because both the inner and outer diameters are the
same in both the tube and connection. Most integral and metal-to-metal
sealing connections often are referred to as premium connections, but this
often is a misnomer. With the exception of API X-line, these should be
referred to as proprietary threads. They are patented, and their dimen-
sions and properties are strictly those specified by the manufacturer, even
though they usually are on API specific tubes. 

Many of the proprietary connections are designed for special applica-
tions, where the loading exceeds typical casing design loads. High-tensile
loads and high pressures come to mind, but there are other types of
loading we often do not consider. One of these is high torsion. If a casing
string is to be rotated (for cementing or drilling), the frictional torque
often is much higher than the recommended maximum makeup torque of
most connections. Additionally, in some wells, where temperatures cycle
significantly between flowing and shut-in times, severe compressive
loading can take place. That a particular connection may be strong in ten-
sion does not necessarily mean that it is as strong in compression. For
these applications, special connections have been designed. One propri-
etary thread is of an interlocking design, so that it may used in high-
torque situations, curved well bores where bending due to bore-hole
curvature is a possible cause of connection failure, and situations where
axial compressive loading is significant. The interlocking-type thread is
somewhat unique in that it is wider at the crest than at the base, and its
width also is tapered along its length.

One should always consult the individual manufacturer for properties
such as strengths and makeup torque. Another important point is that one
should follow the manufacturer’s recommendation as to thread lubricant,
as some lubricants used with API 8-rd connections can result in loss of
pressure seal in some of the proprietary connections. And, on the subject
of thread lubricants, it should be mentioned that some connections are
coated with special clear lubricants at the mill to avoid the need for field
lubrication. This is not a labor-saving process but one of avoiding possible
environmental and formation damage from conventional lubricants.

1.7 Strengths of Casing
The strengths of the many sizes, weights, and grades of casing are given
in various sources. API casing strengths and dimensions are given in API
Bulletin 5C2, and formulas used for calculating those values are given in
API Bulletin 5C3 or ISO/DIS 10400. These values are also published in
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many other sources. We discuss later the formulas used to calculate casing
design strengths.

1.8 Closure
In this chapter, we covered a few of the basics of oil-field casing, and it
was assumed that the reader has some general knowledge of casing and
its use in oil and gas wells. This chapter was not intended to be a compre-
hensive description of the manufacturing, metallurgy, and specifications
of casing. The interested reader should refer to other publications for
those types of information, such as the API and ISO publications men-
tioned in the References of this chapter as well as the published informa-
tion of several casing manufacturers as well as the manufacturers of
proprietary connections. 

In the next chapter, we look at some of the basics of calculations and
hydrostatics for casing design.
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CHAPTER 2

Basic Calculations and Hydrostatics

2.1 Introduction
Hydrostatics is a subject so simple we should not even have to devote
space to it. If you actually believe that, then you have not worked in the
oil field for very long. The truth is that hydrostatics is a relatively simple
subject, but the problem is that its simplicity is often deceptive. Most texts
and courses on fluid mechanics devote very little space or time to hydro-
statics because the interesting part of fluid mechanics is fluid dynamics
not fluid statics, consequently many authors and instructors treat fluid
statics as trivial. And I suppose it might justifiably be considered trivial
relative to hydrodynamics and other more difficult topics, but the net
result is that too many engineers get through it with little more than a
superficial understanding. Too often, some of the simplifying assumptions
become imbedded as axioms of truth. For instance many engineers (and
even a few distinguished professors) go through their entire careers
believing that water is incompressible. And in our particular discipline,
the concept of buoyancy, for example, has led to all sorts of incredible
nonsense, some of which has even been published in textbooks and peer-
reviewed literature. Take a look at the example in Figure 2–1 to illustrate a
bit about buoyancy. 

The figure shows a smooth tube suspended vertically in an idealized,
vertical well. The tube has a sliding seal assembly on the bottom that
allows frictionless vertical motion in a concentric packer. It is supported
entirely at the surface, where a weight indicator measures its suspended
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weight. Both cases are identical, except in case A the annular space is
filled with air and in case B the annular space is filled with water. Now, 

1. Will the weight indicator show that the weight of A is greater than 
B, less than B, or the same?

2. Suppose the tube in both cases is 4½-in. API ST&C casing, will 
the weight indicator show that the weight of A is greater than B, 
less than B, or the same?

The answer to the first question is “the same.” The answer to the second ques-
tion is “greater than B.” Did you get both answers correct? If you did not, do
not feel bad, because many engineers miss one or both of these (in addition,
no one else will know you missed the correct answers). But let us suppose
you answered both correctly, can you explain the reasons for the answers? 

Now, let us pose two more questions. Suppose we have a joint of API
casing (no defects) on a test rack in a lab and we also have a high-priced
vacuum pump capable of pulling a near perfect vacuum1 on the inside of
the casing joint. Under a near perfect internal vacuum,

• Will the joint of casing collapse? 

• Do we have enough information to make that determination? 

Figure 2–1  Smooth tube suspended in a vertical well

1. A perfect vacuum is a theoretical concept that does not actually exist in the 
known universe.

Air

Water

A B
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The answer to the first question is “no,” it will not collapse. The answer to
the second is “yes,” we do have enough information to determine that it
will not collapse. If you missed any of these questions or if you cannot
explain the answers, you need to read this chapter. If you correctly
answered them all and you can actually explain the reasoning, you should
still read this chapter.

2.2 Units of Measure
Before we get into any specific discussion of hydrostatics or any other
calculations in this text, we should comment a bit on units of measure.
This is a subject that one would like to avoid, but in an industry like ours,
which actually spans the globe, some comments are necessary. There is
no doubt that the world’s acceptance of the Système International d'Unités
(SI) as the world standard system in the latter half of the last century was
a step in the right direction, and frankly no other system of units should
have ever seen the light of the 21st century. But, for various reasons, local
adoption of the SI system was not universal; consequently, our industry
still is encumbered with a relic system, which we diplomatically refer to
as oil-field units. A decision as to whether to continue perpetuating its use
in a text such as this was a difficult one. My own preference is to use the
SI system exclusively as a step in the right direction. However, such a
choice would severely limit the utility of this text, since the vast majority
of engineers and practitioners in our industry still use oil-field units, or
possibly even worse, some hybrid combination of oil-field and SI units.
Therefore, I chose to yield to the overwhelming popularity of the conven-
tional oil-field units system for use in this text. But, rather than totally
bow to convention, I am going to attempt to keep formulas and equations
as independent of units as possible to enhance this text’s usefulness for
those using SI units. However, I make no concession at all to those who
still use non-SI metric units such as bars, kilograms-force, and the like.

It should not be necessary to discuss units of measure any further, but
if one were to read the discussions and arguments that took place in petro-
leum publications back in the days when a conversion to the SI system
appeared imminent, one would realize that there was considerable confu-
sion back then. To think that confusion has since been resolved is a mis-
take. I know this to be true, because I see it in the classroom all the time.
The general confusion is not with the SI system, but with the one that has
been used historically in the oil field since its beginning. The primary
confusion is between units of mass and force, especially pound-mass and
pound-force and their seeming interchangeability. (Those who use SI
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units should not be too smug here, because it was not that long ago that
engineers working in the metric system used both kilograms-mass and
kilograms-force.) In the English system of units, there are actually three
distinct systems: the absolute system, the British gravitational system, and
the engineering system. They differ in how they account for the units of
mass and force. Table 2–1 summarizes the three English systems.

In the table, g is the local acceleration of gravity and gc is a conver-
sion factor taken to be 32.17405 (lb·ft)/(lbf·s2), or for practical purposes
32.2 (lb·ft)/(lbf·s2). Of the four possible systems in that table, the one used
for “oil-field units” is the engineering system, which is the most con-
fusing. One can see that, in the engineering system, it is often thought that
pound (a unit of mass) and pound-force are interchangeable when it
comes to mass and weight, and in fact, when the local gravity is equal to a
standard gravity of 32.17405 ft/s2, they are numerically equal (but their
units never are). Note though, that they are not numerically equal in
Newton’s second law. Now, the gravitational system notwithstanding, the
pound (avoirdupois) is a unit of mass and was defined by the National
Bureau of Standards in 1959 as

(2.1)

That definition was also adopted by other countries that utilize that unit of
measure. Since that is the standard definition of the pound, we use that
definition as standard in this text and pound or lb always means a unit of
mass not force. We do not use the term pound-mass or lbm, since that is
redundant to the standard definition, and there is no system where such
terminology is necessary. When we refer to force in the English engi-
neering system we use pound-force or lbf.

2.2.1 Weight and Mass in Oil-Field Context
In addition to the preceding discussion of units, we should also clarify the
confused use of the terms weight and mass in common oil-field language.
Properly, weight means only one thing, force. However, that definition
notwithstanding, it is quite common in the oil field and the world of com-
merce in general to refer to mass as weight. We often speak of casing, for
instance, in terms of “size, weight, and grade,” such as “7 inch, 26 pound,
N-80.” The “weight” referred to is not weight in its proper sense, but
rather mass per unit length. In that example, it is in lb/ft; and in SI units it
would be expressed as kg/m. Weight is a derived property, the force

1 0 45359237pound kilogram≡ .
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exerted on a body due to local gravity, and it is not the same on the moon
as it is on earth, for example. But mass is a fundamental property and con-
stant whether on the moon or on earth.2 If a man jumps off a roof on the
moon, his landing will be relatively soft compared to earth, because the
gravitational acceleration on the moon is so low, his velocity when he hits
the ground will be much less than if he jumped from the same height on
earth. However, if a jogger is running along the moon’s surface at 5 m/s
and hits a brick wall it is going to hurt just as badly as on earth, because
his mass is the same and his velocity is the same.

We should also point out that it has become common practice in SPE,
API, and other publications to employ the term pound-mass and use the
abbreviation, lbm, in addition to pound-force and lbf. This is quite unnec-
essary because the pound (lb) is the single standard unit of mass in both
the English engineering and absolute systems. In the British gravitational
system, the unit of mass is the slug, but the unit of force is the pound-
force (lbf), so there should never be any confusion as to what a pound (lb)
is. A pound (lb) always refers to mass in any standard system of units.
Every engineer is taught that as part of his or her education (or certainly
should have been taught). Therefore, it is only through ignorance and
sloppiness that such a term as pound-mass (lbm) comes into engineering
usage. It is not used here because a pound (lb) is defined as a unit of mass. 

Table 2–1 Common systems of units

System/
Quantity

SI Absolute Gravitational Engineering

Time second second second second

Length meter foot foot foot

Mass kilogram pound slug pound

Force Newton poundal pound-force pound-force

Weight 
(a force)

w = mg w = mg w = mg w = m(g/gc)

Newton’s 
second law

f = ma f = ma f = ma f = m(a/gc)

2. We are considering only Newtonian mechanics here. In special and general 
relativity, such a statement is false.



24 Chapter 2—Basic Calculations and Hydrostatics

In casing design, unless we are calculating surge loads, we almost
always use weight instead of mass. So we adopt the following convention
here and for the rest of this text:

   (2.2)

Specific weight refers to a weight/volume. That is essentially what was just
defined, because the specific weight for a particular casing is determined by
its outside diameter and inside diameter as well as its length. We also use a
standard gravity in that definition, and that brings us to the next topic.

2.2.2 Standard Gravity
In the preceding formula, the specific weight is determined from the spe-
cific mass using the local acceleration of gravity, g. The acceleration of
gravity is not a constant and varies even on earth. For instance, a string of
casing with a mass of 500,000 lb might weigh 498,725 lbf at the equator
and 501,275 lbf at one of the poles. We are not going to consider local
variations of g in this text, but instead use an average value, called the
standard gravity. Such an average value was adopted by the Conférence
Générale des Poids et Mesures (CGPM) in 1901 and defined as the stan-
dard gravity to be used in legal weights and measures. The GCPM
defined value is

(2.3)

In English units, it is

(2.4)
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It is not likely that the local acceleration of gravity will deviate enough from
the standard gravitational acceleration to significantly affect our calcula-
tions, but it is important to understand these definitions and assumptions.

2.2.3 Fluid Density
Throughout this text, we continually use the density of fluids in well bores
to calculate hydrostatic pressures. The common oil-field measure of
liquid density is pound per gallon (lb/gal), which almost always requires
conversion factors every time it is used. Almost anyone who uses that
measure has long since committed to memory the necessary conversion
factors, but it is still an awkward measure, especially for those accus-
tomed to SI units and in regions where the common engineering density
measure, pound per cubic foot, is used instead. Therefore, in the interest
of making this text more universal, I use specific gravity in referring to the
densities of well bore liquids. This specific gravity is easily multiplied by
the density of water in whatever units one may want to use to give the
density of the liquid in those units. 

That, of course, brings up the question as to what is the density of
water to which our measure is specific. Pure water at 4° C has a density of
1000 kg/m3, and at 20° C, it has a density of 998 kg/m3. Respectively then,
those give us densities of 8.345 lb/gal and 8.33 lb/gal or 62.43 lb/ft3 and
62.32 lb/ft3. Some immediately will begin to question, then, to what tem-
perature do we refer when we have to convert the specific gravity into a
value of density for a calculation. It is interesting that this question arises
in this context, because it almost never arises when one reads a drilling
fluid density from a drilling report and uses it in hydrostatic calculations.
At what temperature was the density measurement made on the rig, and
how does that relate to the temperature and density down hole? Do we
ever even think about that? In this text, I use the density of water at 20° C
for sake of consistency and possibly some notion that it is perhaps closer
to the average temperature at which most rig density measurements are
made. But I also add that it does not make any difference, because nobody
knows the density of the drilling fluid at 4° C or 20° C in the first place.
Furthermore, if I work in SI units, I use water at 4° C just to make my life
easier, since the density in kg/m3 is simply 1000 times the specific gravity
rather than 998 times.

2.2.4 Units in Formulas and Equations
In this text, I try to adhere to a long-standing conviction that numerical
conversion factors have no place in equations and formulas. The use of
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numerical conversion factors in formulas only confuses understanding
and often renders a formula useless for many applications. To give you an
example, here is a formula for maximum stress due to planar bending of a
tube (which we study in a later chapter):

In this formula, the maximum axial bending stress, σ, is equal to Young’s
modulus, E, times the outside radius of the tube, ro, divided by the radius
of curvature, R, of the bore hole. The plus-or-minus sign indicates it is
positive on the side of the tube that is stretched and negative on the side
that is compressed in the curved configuration. This formula is valid for
any system of units. Furthermore, in this form, it is easy to visualize that it
is merely an expression of Hooke’s law in one dimension, that is,

We can see from this formula that, for simple bending, the strain (which is
dimensionless) is the ratio of the radius of the pipe to the radius of the cur-
vature of the bore hole. Note also that strain can be positive or negative
but radii are always positive, hence, the necessity of the plus-or-minus
sign in the last part. In this form, we can actually derive some insight into
the nature of the bending stress just by looking at the formula. Any engi-
neer should know that, to use this (or any) formula, one must use consis-
tent units. For example, when this formula is written in terms of basic
quantities (force and length in this case) it looks like this:

It should be obvious that all length units should be the same as well as all
force units. Now let us look at the same formula with some numerical
conversion factors included:
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The first one uses oil-field units, where the stress is in lbf/in.2 and Young’s
modulus is also in lbf/in.2. It should be obvious that the radius of the pipe
and the radius of curvature of the well bore must be in the same units,
either inches or feet. Typically, in the oil field, we express the pipe radius
in terms inches and radius of curvature of the well bore in feet. Clearly,
one of these has to be converted and the number in the first formula is a
conversion factor, 12 in./ft. The second formula is in SI units where the
stress and Young’s modulus are in Pascals (Pa or kPa or MPa), and we
measure casing radius in millimeters (mm) and radius of curvature for the
well bore in meters (m), then we convert one or the other radius measures
into the same units. In this case, the conversion factor is 1000 mm/m.
Both these formulas are unit specific and cannot be used in another
system without explanation as to what the units are for each variable in
the formula. These two versions are fairly easy to decipher, but look at a
version of this same formula that often appears in the petroleum literature:

What on earth does this one mean? Is it even the same formula? In this
version, D is the pipe diameter in inches and θ is the bore-hole curvature
expressed as degrees per 100 ft. Let us see how this one is the same as our
original version:
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Is there anything intuitive or insightful about the final result of that pro-
cess? Granted, it may be useful to someone employing those particular
units, but for someone else using SI units, how long would it take to come
up with a usable version, where diameter is in millimeters and the curva-
ture is in degrees per 10 meters? Young’s modulus is buried in the formula
as a numerical value, and unless one knows it is there and what the units
are, one is at a loss to convert it to something useful in SI units like

Also consider the possibility that our pipe is made of aluminum or some
other alloy with a different value for Young’s modulus. How useful would
either of these last two formulas be then? That should be evidence enough
that conversion factors have no place in equations and formulas.3

Along the way in this text we will obviously have to make some con-
cessions to units, but what I will try to do is keep the explanation clear and
in a few cases actually provide some conversion factors.

2.2.5 Significant Figures, Rounding, and Computers
I taught an undergraduate course in numerical methods for several semes-
ters, and one thing never failed to get my attention. For a first assignment, I
often used an easy problem to get the students adapted to the campus com-
puter system and refresh their programming skills, since many had gone
two semesters since they took a beginning computer programming course.
A typical assignment was a simple beam-bending problem that consisted of
entering the data from a formatted data file, calculating the transverse
deflection of the beam due to a single load on the end, and printing the for-

3. There was a period in engineering history when it was considered de rigueur 
to lump all known numerical values and conversion factors in a formula into 
a single numerical value. That greatly aided slide rule calculations, but it does 
not justify this confusing practice today.
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matted results to an output file. The deflection equation was given so that
the assignment was only a computer exercise. The beam was 10.00 ft in
length, but after a few semesters, I began to state its length as 120.00 in. to
not have to spend so much time helping students find their “programming
error.” For most students it was a relatively simple assignment, but a
semester never went by that this assignment did not generate several results
stating that the deflection was something like this, “ .”
No units, no comments, just “the answer.” I assume it must be in inches,
since all other length measurements were given in inches. Did this student
even notice that the deflection was about 17 times the original length of the
beam? And what astounding precision had been accomplished! I could not
even make up a scenario this ridiculous. The students were taught better
than that, but for some strange reason computers seem to make a lot of
people dumber rather than smarter.

Significant Figures

First of all, significant figures are not inconsequential in calculations.
There are some rather strict rules that, if followed to the letter, can lead to
absurdities such as 6 × 2 = 10. But that aside, one should at least be aware
of the importance of significant figures and adhere as closely to the rules
as is practical: 

Rule 1. All nonzero digits are considered significant.

Rule 2. All zeros between two nonzero digits are significant. For 
example, 300.05 has five significant figures.

Rule 3. For any decimal number whose absolute value is less that 
1, all zeros immediately to the right of the decimal are not 
significant figures. For example. 0.0043 and –0.00051 each have 
two significant figures.

Rule 4. For any decimal number, zeroes after a nonzero digit to 
the right of the decimal are significant. For example, 0.000400 
has three significant figures.

Rule 5. For numbers whose absolute value is greater than 0, all 
zeros the right of the last nonzero digit are not significant unless 
there is a decimal. Without knowledge of their source, we must 
assume the number 64,000 has only two significant figures 
whereas 64,000. has five by virtue of the decimal point.

Rule 6. A zero by itself has one significant figure.

u = 2042 89568936.
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The application of significant figures to arithmetic operations has only
two rules:

Multiplication and division. The result should be rounded to the 
number of significant figures of the factor containing the least 
number of significant figures. For example, 9.81 × 7521 = 73,8000. 

Addition and subtraction. The result should be rounded to the 
position of the least significant digit in the least uncertain number in 
the addition or subtraction. For example, 9.806 + 0.00055 = 9.807. 

We all relax these rules a bit from time to time, often out of laziness but
occasionally with some purpose. This book is an example. The rules are
violated several times intentionally to show the results of intermediate
steps in calculations that would not always appear if the calculations were
being done in sequence on a calculator or computer. But there are prob-
ably other places where I cannot claim this as an excuse. I have tried to
weed out the most flagrant violations.

Rounding

There are different ways to round numbers, and they do have an effect on
calculations. Some computer operations tend to truncate numbers,
whereas we manually tend to round numbers up or down depending on
whether the digit just past the rounding point is 5 or greater (round up) or
less than 5 (round down). This latter method works well for small
amounts of data, but it has a bias toward rounding up rather than down,
since the digit 5 is a median and it is always rounded up in this method.
There is a round-to-even method that compensates for this. It works by the
following four rules:

• Determine the last digit to retain.

• If the following digit is 6 or greater or 5 followed by nonzero 
digits, then round up by 1.

• If the following digit is 4 or less, round down by 1.

• If the following digit is 5 with no following digits or all zero 
following digits, then round to the nearest even digit (if it is odd 
the nearest even digit is above, if it is even it stays the same). For 
example, if we are rounding to the second decimal place, 6.5251 
rounds to 6.53, 6.5248 rounds to 6.52, 6.5250 rounds to 6.52, and 
6.5350 rounds to 6.54.
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Other methods work well on computers, but this is relatively easy for
manual calculations. 

Measurements

When it comes to measurements, precision and accuracy do not mean the
same thing. Precision refers to repeatability and significant figures, which
has nothing to do with accuracy, which refers to truth. You might possess
the most precise digital scale in the world, step on it, read your body mass
as 65.982812845 kg, and repeat this several times with the same reading.
That scale is precise. But when you step off the scale, and its reading
shows 2.032456210 kg with nothing on it, then it is not accurate. A well-
head bourdon-tube pressure gauge may be more acute than a deadweight
tester that has not been calibrated. Recently, three groups of physicists
measured the gravitational constant (big-G, not to be confused little-g, the
gravitational acceleration) with the greatest precision that had ever been
achieved. All three groups got different results. What good is precision, if
it is not accurate?

Another measurement transgression that seems to pop up often in the
petroleum literature is the careless use of the ± symbol. “Surface casing
was set at ±3000 ft” does not mean the same thing as “Surface casing was
set at 3000 ± ft.” In the first case, it means a 6000 ft tolerance in setting
depth, so we assume the depth is measured at a datum like sea level and the
location must be at least 3000 feet above sea level, right? The second case
means the casing was set at about 3000 ft plus or minus some unspecified
tolerance. The ± symbol is not a synonym for the word approximate(ly),
especially if it appears before a measurement. In fact, when it appears after
a measurement it could still mean anything if the tolerance is not specified.

Comment

The point of this brief discussion is essentially a reminder, because most
of you have already been taught about significant figures, rounding, and
measurements in some basic engineering course. So, if we round the stan-
dard gravity to three significant figures, then our calculations using that
value are limited to the same number of significant figures. Furthermore,
if local gravity varies from standard gravity in the fourth figure, which it
often does, then many of our calculations are valid only to three signifi-
cant figures, unless we take the variation of local gravity into consider-
ation. Three or four significant figures are adequate for most of our casing
design applications, but one should be aware of this limitation. Also, it
should be mentioned, API and ISO pressure ratings are rounded to the
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nearest 10 lbf/in.2 and axial load ratings to the nearest 100,000 lbf.
Finally, I would be next to the last person on this planet to lament the
passing of the slide rule to the electronic calculator or computer as a cal-
culation tool, but the slide rule had two qualities computers do not pos-
sess: It forced one to live within the confines of significant figures, and
since it did not place the decimal point, it forced one to become familiar
enough with computations to recognize gross errors.  

2.3 Fluid Statics
Our interest in casing design is primarily concerned with loads imposed
by fluids; and in most cases for casing design, these fluids are static, or at
least we consider the pressures and forces of the fluids only as if they are
static. First of all then, we clarify a few terms and concepts. A fluid, by
most definitions, is a material that cannot sustain a shearing load without
continuous deformation. A fluid may be either a liquid or a gas. A static
fluid is defined to be a fluid with no relative motion within the fluid itself.
Hence, a fluid element does not deform, and this still allows for rigid-
body motion of the fluid. (A glass of water sitting on a table is static in
that there is no internal motion, but the fluid undergoes rigid-body motion
in relation to the earth’s axis, the sun, the galaxy, and so forth.) 

Two types of forces may be exerted on a fluid, body forces and sur-
face forces. The body force is the gravitational force. The fundamental
equation for fluid statics may be written various ways. In differential
form, it is

(2.5)

where  is an element body force of the fluid,  is the local accelera-
tion of gravity, ρ is the density of the fluid, and dV is the element volume.
Both the body force and gravitational acceleration are vectors and their
direction is downward. The density is a scalar quantity (no direction),
sometimes referred to as a field quantity, in that it is a function of position
within the fluid. For simple applications where the density is nearly con-
stant4, we might also write the preceding equation as

4. All fluids are compressible, some more than others. The assumption that some 
fluids are incompressible is a convenience to aid in simplifying some calcula-
tions, which we often employ here. Unfortunately, many engineers go through 
their entire career believing that water actually is incompressible—it is not.
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(2.6)

where V is the volume and m is the mass of the fluid, and we omitted the
vector symbols knowing that the direction of the body force (gravitational
force) is always downward. 

The surface forces on a fluid are shear forces and normal forces. A
surface in this context is not necessarily the interface between the fluid
and another substance but may be any real or imaginary surface within the
fluid itself. As mentioned earlier, there are no shear forces in a static fluid,
so the only surface force is a normal force, which is pressure, normal
meaning perpendicular to the surface.

2.3.1 Hydrostatic Pressure
Hydrostatic pressure is more or less intuitive. It might be described as a
force per unit area exerted on a static fluid or by a static fluid on some
material body. The hydrostatic pressure is a result of the body force plus
any additional pressure that may be applied to the fluid. We also can write
the fundamental equation of fluid statics in terms of pressure instead of
body force. But, before we do that, it is necessary to introduce a coordi-
nate system to make things a little easier. In almost all texts on mechanics,
the coordinate systems used for illustration show the vertical coordinate to
be positive in the upward direction, however since almost everything we
measure in regard to a well in the oil field is measured from the surface
downward, we start out with such a coordinate system and stay with it
throughout this text. Figure 2–2 shows the coordinate system we most
often use. 

Note that this is still a conventional right-hand coordinate system. It
may look a bit awkward at first, because the positive z-axis points down-
ward and the positive y-axis is to the right of the positive x-axis when
viewed from above, but if viewed from below it is exactly what we are
more accustomed to. The main advantage to us is that the z-axis is posi-
tive downward, so that our depth measurements in a well correspond in
sign and direction to the z-axis. Another advantage to this coordinate
system is that, if we assume the x-axis is positive in the North direction,
then the y-axis is positive in the East direction, and directional azimuth
and trigonometric functions are compatible since all angles are measured
in the same direction. Directional azimuth in a well is measured from
North in a clockwise direction, but trigonometric functions are such that

F g V g m= =ρ
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the angle is measured counterclockwise from the x-axis towards the
y-axis. Both of these are perfectly compatible in this coordinate system,
since both appear to measure angles clockwise when viewed from above
even though they are both counterclockwise in the actual coordinate
system. The advantage of directional azimuth and trigonometric function
compatibility is extremely important in directional drilling calculations.

The fundamental equation of fluid statics can be written in terms of
pressure, where z is our vertical coordinate. In differential form it is

(2.7)

where equation dp is the element pressure and po is the external pressure
on the element from above. Another form of the same equation for the
pressure at some true vertical depth, h, is

(2.8)

If the fluid is incompressible such that the density is constant and the local
gravity is constant, then

(2.9)

Figure 2–2 An earth-oriented Cartesian coordinate system.
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where po is some externally applied pressure (usually at the surface in our
context). In many casing applications, we assume the pressure at the sur-
face to be zero, and that equation becomes

(2.10)

The hydrostatic pressure exerted by a fluid on a material body always is
normal (perpendicular) to the surface of the material body. This is very
important to remember. Furthermore, the hydrostatic pressure in a fluid at
any single point is equal in magnitude in all directions. And if we were to
draw an imaginary surface through some part of a static fluid, the only
force on that surface is a pressure normal to it. If you look back at
Figure 2–1, you see that this accounts for the fact that both tubes weigh
the same even though one is suspended in air and the other in water. Since
the bottom of the tubes are not exposed to either annulus fluid, then those
fluids have no effect on the weight of the tube as measured at the surface.
The water pressure acts perpendicular to the walls of the tube and hence
there is no upward or buoyant force. For a smooth vertical tube, there can
be no vertical force component, due to hydrostatic pressure acting along
the walls of the tube. 

Before leaving this section, there is one more point we should briefly
cover. We know that the units of pressure are force divided by area, F/L2,
and in the units common to the oil field, these are lbf/in.2 or N/m2. Con-
sider now a quantity of units force·length divided by volume, F·L/L3,
lbf·in./in.3 or N·m/m3. Note that the length dimension in the numerator
cancels one of the length dimensions in the denominator leaving the same
dimensions as pressure. Is it possible then that pressure might mean
something in addition to our common perception? Note that this new
quantity has, in the numerator, the dimension of energy, and the denomi-
nator has the dimension of volume. This might be energy divided by
volume, or more correctly, energy density; in fact, that is another way of
thinking about fluid pressure. It can be a very useful potential function
from which we can derive or calculate various other quantities using
energy methods rather than equilibrium formulations. While this has little
application in hydrostatics, it can be a valuable tool in hydrodynamics,
such as drilling hydraulics calculations. I mention this here because such
a concept rarely appears in basic fluid mechanics texts but is invaluable in
many fluid mechanics applications. 

p g h= ρ
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2.3.2 Buoyancy and Archimedes’ Principle
When we mention buoyancy, Archimedes’ principle automatically comes
to mind. It is an essential part of hydrostatics, which states that the
buoyant force on a submerged, or partially submerged, body is equal to
the weight of the volume of fluid displaced by the body. This is quite
handy for calculating the buoyed weight of submerged objects, such as
casing, without the necessity of determining the hydrostatic forces on the
body, which requires details of the body geometry and depths within the
fluid. For instance, a cube with dimensions b × b × b submerged in a
liquid, as shown in Figure 2–3, has a buoyant hydrostatic force acting on
the bottom cross-sectional area, b × b. We can calculate the force on the
bottom easily:

(2.11)

The force on the top is

(2.12)

The net buoying force is the sum of those two. And the buoyed weight,
, of the cube can be calculated as

(2.13)

(2.14)

(2.15)

We see that the depth is irrelevant (assuming the liquid is incompressible) and
the buoyed weight depends only on the difference in densities of the solid and
the liquid and the volume of the solid (or the displaced liquid), and equation
(2.15) is a statement of Archimedes’ principle, which can be generalized as

F g hbbottom liquid= − ρ 2

F g h b btop liquid= −( )ρ 2

Ŵ

Ŵ g b g h b b g hb= + −( ) −ρ ρ ρsolid liquid liquid
3 2 2

Ŵ g b hb b hb= + − −( )⎡⎣ ⎤⎦ρ ρsolid liquid
3 2 3 2

Ŵ g b= −( )ρ ρsolid liquid
3
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(2.16)

where

Now suppose that, instead of the orientation in Figure 2–3, the cube had
been oriented with the “bottom” face 60°  to the vertical and a “side” face
30°  to vertical. The calculation of the buoyed weight is much more com-
plicated but yields the same result. So, it should be obvious that
Archimedes’ principle is of considerable use in simplifying calculations
of buoyed weight of submerged or semi-submerged objects.

Figure 2–3 A solid cube submerged in a liquid.
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Another handy relationship we can derive for employing Archimedes’
principle is the formula for a buoyancy factor for a body, which is the ratio
of the buoyed weight in a liquid to the weight in air. We can start with a
definition of the buoyancy factor,  and equation (2.16):

(2.17)

We could also use specific gravity or specific weights in the formula
instead of density.

While Archimedes’ principle can be of great use, as we just demon-
strated, it can also get us into serious trouble if we are not careful. Here is
an important question: Can we use Archimedes’ principle to determine a
load at some point within a buoyed body? Let us look at some examples
of axial and moment loads on tubes due to buoyancy and gravity.

Axial Load in a Vertical Tube

Suppose we have a smooth tube suspended vertically in a liquid to some
depth, h, as in Figure 2–4. We want to know the axial load, Fa, in that tube
at point a some distance, , from the bottom. The density of the liquid
(fluid) is ρφ , the density of the tube (solid) is ρs, and the tube is open at
both ends.

We use Newton’s third law by saying the force at point a is equal to
the buoyed weight of the portion of the tube below that point, and we can
calculate that buoyed weight by calculating the displaced volume times
the difference in the density of the solid and the fluid, in other words
Archimedes’ principle:

(2.18)

 Now, is that correct? Is that really the axial force in the tube at point a? Let
us check it using Newton’s third law and the actual forces, that is, the body
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force of the section of tube below point a and the force of the fluid on the
bottom of the tube. Assuming there is no pressure at the surface, then

(2.19)

The two methods give different results because  and h are not the same!
We know that Newton’s law with the forces is correct, so what is wrong
with using Archimedes’ principle in Newton’s law? Before we answer
that, let us note one thing about the results. If , then they both give
the same results. In other words, the only point where Archimedes’ prin-
cipal can give the correct axial load in the suspended tube is at the surface.
The casing in this example is being acted on by forces (at the surface) not
accounted for in Archimedes’ principle. The problem with Archimedes’

Figure 2–4 A smooth open-ended tube suspended vertically in a liquid.
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principle is that, in general, it cannot be used on part of a body to give the
loads within the body itself. This is important to remember, and it is a
common mistake made by many who should know better. Newton’s third
law with actual forces gives us the true loads; Archimedes’ principle gives
us only something often termed effective loads in the vertical direction.
Actually, there are legitimate applications for the effective loads, and we
discuss those later. For now we consider how Archimedes’ principle can
give us misleading results. 

Axial Load in a Horizontal Tube

Now let us attempt another application using Archimedes’ principle. Sup-
pose we have an open-ended tube fixed to a vertical wall and extending
horizontally into a liquid, and the central longitudinal axis of the tube is at
some depth, h, as in Figure 2–5. What is the longitudinal axial load in this
horizontal tube (neglecting bending loads due to gravity for now)? We can
see that a pressure load on the end of the tube is acting on the cross-sec-
tional area, so we know there is a compressive axial load in the tube. Can
we use Archimedes’ principle to determine that load? No, we cannot,
because Archimedes’ principle says nothing about horizontal hydrostatic
loads. Also we cannot simply multiply the pressure by the cross-sectional
area, as we did previously, because it is apparent from the figure that the
pressure on the cross section is not the same at all points since the pres-
sure varies with depth. So, let us see how we calculate the load on the end
due to the liquid pressure, which varies with depth.

Figure 2–5 Horizontal tube, centroid at depth, h.
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We could show this more easily if it were a solid bar with a rectan-
gular cross section, but since our interest is in tubes, we might as well see
the details of how it is done. Since pressure varies with depth, we can
express the pressure at some point on the tube end as follows:

(2.20)

Note carefully the orientation of our coordinate system, because we have
adopted the convenient system mentioned earlier for our use in well-bore
calculations, and it appears to be upside down to what we are accustomed
to seeing; that is, the z-axis is positive downward. The angle, θ, is mea-
sured counterclockwise from the positive z-axis. Since the pressure varies
over the area of the tube, the force due to the pressure on the end of the
tube is the pressure integrated over the area of the tube:

(2.21)

From this result, we see that the force on the end of the tube is equal to the
pressure at the center of the tube times the cross-sectional area of the tube.
Is this a general result for any tube, or is it specific for a horizontal tube
face? This can be generalized to any inclination and is an important result
in fluid statics, in that the force of a fluid of constant density on a sub-
merged flat surface is equal to the pressure at the centroid of the surface
times the area of the surface.
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Axial Load in an Inclined Tube

We generalize the preceding statement with the following example of an
inclined tube. The tube in Figure 2–6 is inclined at some angle, α, from
vertical. Note that, in oil-field applications, well bore inclination angles
are always measured from vertical not horizontal. So again the pressure at
the center of the tube end at its end is given by

(2.22)

where po is a surface pressure and h is the depth of the center of the tube
end. If we use Newton’s third law, again with the subscript s denoting a
coordinate direction along the longitudinal axis of the tube, the axial force
on the end of the tube is

(2.23)

We see then that the result is the same. No matter what the inclination
angle the hydrostatic force on the end of the tube is equal to the cross sec-
tional area of the tube times the pressure at the centroid of the tube end.

Now let us look at the axial force at some point, a, some distance, ,
from the end of an inclined tube: 
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(2.24)

Notice that, as the inclination angle goes to 0°  (vertical), equation (2.24) is
identical to equation (2.19) with the addition of a surface pressure, and when
the inclination goes to 90°  (horizontal), it is identical to equation (2.21).

Moment in a Horizontal Tube

Let us now look at one more example of a horizontal tube and determine
the moment in the tube at some point a. We determine the moment about
the x-axis, in Figure 2–7.

Again we might be tempted to use Archimedes’ principle as others
have before. We try that using the buoyed weight of the end segment to
find the moment at point a about the x-axis:

Figure 2–6 Tube at an inclined angle in a liquid.
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(2.25)

That is pretty straight forward and relatively easy. Now, let us do it using
the actual forces, and to save a little bit of calculation, we use the center of
gravity of the segment as the length of the moment arm:

Figure 2–7 A fixed horizontal tube.
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(2.26)

We can see immediately that the results are different. The first term of the
result is the moment due to gravity, and we see that it is exactly the same as
the moment we derived using Archimedes’ principle. But the second term is a
moment at the end of the tube due to the difference in the pressure from the
top of the tube to the bottom of the tube. We might call this term a pressure-
end moment. Clearly, this term is finite and does contribute to the moment in
the tube, so it is not something fictitious that we can arbitrarily disregard. But,
how significant is this term in oil-field applications? Let us look at an example
to get some idea of the magnitude of that term in an oil-field context. Say, the
tube is 9⅝ in. casing with an inside diameter of 8.681 in., and the fluid is
drilling fluid with a specific gravity of 2.0 (124.64 lb/ft3 or 1996 kg/m3):

(2.27)

This is a relatively small value in oil-field calculations (0.86 lbf·ft or 1.16 J),
so in oil-field applications, we almost always choose to ignore it. But if we
choose to assume its value to be negligible, then we must certainly acknowl-
edge at least to ourselves that we are doing so. 
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Moment in an Inclined Tube

That was for a horizontal tube, but what is generalized result for an
inclined tube? In this example, the inclination angle is α, h is the depth at
the center of the tube end, and s is a coordinate along the axis of the
inclined tube. Now the pressure varies along the length of the tube.

(2.28)

This was also a bit tedious to do, but most of the terms evaluate to zero
and the results are identical to the horizontal case, except for the sine of
the inclination angle. Note that, as the inclination angle goes to zero (ver-
tical well bore), both terms, the gravitational moment and the pressure-
end moment, vanish, as one would expect. Likewise, both terms are a
maximum when the tube is horizontal.

2.4 Oil-Field Calculations
It is important that we become familiar with routine calculations involving
hydrostatics in bore-hole applications. This is particularly important,
because more often than not, we do not have measured pressures down
hole, and we must rely on surface pressures and known fluid densities to
calculate down-hole pressures and loads. In drilling and casing applications,

M

g r r s s s

g h s r

x

s o i as

f o

a

∑

∫

=

−( ) −( )

+ − −( )⎡⎣ ⎤⎦ +

0

2 2ρ π α

ρ α

sin

cos si

d
�

� nn cos cos

cos sin

α θ θ θ

ρ α

π { } −( )

− − −( )⎡⎣ ⎤⎦ +

∫∫ r s s s

g h s r

o as

f i

a

d d
0

2�

� αα θ θ θ

ρ ρ θ α θ

π
cos cos

cos sin cos

{ } −( )

+ +( )
∫∫ r s s s

g g h r r

i as

f f

a

d d
0

2

2

�

dd dr M

M
s

g r r r r

r

r

a

a
a

s o i f o f i

i

o

θ

ρ π ρ π ρ π

π

∫∫ − =

=
−( )

−( ) − +⎡

0

2

2

2 2 2 2

0

2

�
⎣⎣ ⎤⎦ + −( )sin sinα ρ

π
αg r rf o i4

4 4

=
−( )

−( ) −( )siπ ρ ρM
s

g r ra
a

o i s f2

2

2 2�
nn sinα ρ

π
α+ −( )g r rf o i4

4 4



2.4  Oil-Field Calculations 47

we typically work with gauge pressures as opposed to absolute pressures.
Atmospheric pressure is negligible in the context of these types of applica-
tions, so it typically is ignored, but at least we acknowledge here that we
recognize the difference between absolute pressures, which include atmo-
spheric pressure, and gauge pressures, which do not. 

2.4.1 Hydrostatic Pressures in Well Bores

Liquid Columns 

Calculating hydrostatic pressure due to a liquid column in a well bore is
probably the most frequent type of calculation made in drilling, comple-
tion, intervention, and stimulation work. It is easy to do and one of the
first things a field engineer learns to do. The best way to understand it is
with an example. Figure 2–8 shows a simple but common well-bore situa-
tion. A tube is hanging freely in a vertical well bore with an open end. The
well-bore fluid has a specific gravity of 1.5 and the depth of the tube is h.
What is the hydrostatic pressure at the end of the tube?

The pressure can be calculated as

Figure 2–8 An open-end tube suspended in a well.
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where ρw is the density of water. This calculation is quite simple in SI
units, because the density and depth are always in compatible units. For
instance, if the depth is 3000 m then the calculation is

SI units are consistent and all these types of calculations are straight for-
ward, however, oil-field units are not consistent and conversion factors are
required. The fact that pressure is measured in lbf/in.2, depth in ft, and
density in lb/gal basically means that length, area, and volume are mea-
sured in three distinct and inconsistent units. So let us derive the neces-
sary conversion factor such that we may have it available for use in all our
oil-field calculations of this type. One way to do this is as follows:

(2.29)

where CL is a conversion factor for the length, area, and volume units and
gc is a conversion factor for the mass units as previously discussed. We
can calculate the value of this factor as

(2.30)

This is the factor commonly used in the oil field, and since any deviation
of local gravity from standard gravity is usually negligible, the term
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units. However, this has also led to a certain amount of misunderstanding
on the part of those using these units, since the gravitational acceleration
is an essential part of any equation dealing with gravitational body forces
(e.g., hydrostatic pressure) and cannot be omitted. We could use the
proper formula for pressure in a fluid of constant density as

(2.31)

with the understanding that, when using oil-field units for calculation,
it means

(2.32)

but we take one more step to simplify that a bit. If we use specific weight
instead of density, it makes the use of conversion factors somewhat easier.
Specific weight is defined as 

(2.33)

In the English engineering system, this means

(2.34)

The SI units of specific weight are N/m3, and in oil-field units, they are
lbf/gal. This makes the pressure formula slightly less cumbersome.

(2.35)

Remember though that, in oil-field units, we still need the conversion
factor for length, area, and volume as

(2.36)
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Now, if we take the previous example, with a depth of, say, 10,000 ft, and
calculate the pressure at the end of the tube it goes like this:

And in SI units

In the SI unit calculation, we used the specific weight of water at 4° C to
make life easier, so the results are slightly different. If you prefer, you
could use the density at 20° C and the specific weight of water would be

N/m3. That type of calculation should become
routine for the engineer or anyone doing hydrostatic calculations in well
bores. From now on, we do not show the conversion factor in the formula,
so that the formula is not unit specific, but you must remember to include
it when using oil-field units.

Figure 2–9a shows another example of the same well with pressure on
the surface. The formula is the same but the pressure at the surface is not
zero in this case.
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If the surface pressure is 1200 lbf/in.2, calculate the pressure at the bottom
of the tube: 

Figure 2–9b shows different fluids in the same well bore. In this case, the
fluid in the annulus has a specific gravity of 1.5, as before, but the fluid in
the tubing has a specific gravity of 1.1.

There is a pressure of 1200 lbf/in.2 on the annulus, and the tubing is
closed at the surface. Here, our task is to calculate the pressure at the sur-
face in the tubing. There are various ways to do this, but the easiest way is
to set up an equality knowing the pressure in both the tubing and annulus
are equal at the bottom of the tubing:

(a)    (b)

Figure 2–9 (a) Same well with surface pressure. (b) Well with different fluids 
and surface pressure.
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For a slightly different perspective, suppose we do not know the density
of the fluid in the tubing, but we measure the pressure at the surface of the
tubing to be 2000 lbf/in.2. All other variables are the same. What is the
specific gravity of the fluid in the tubing? What is the density of the fluid
in the tubing? We start out exactly the same; that is, we know the pressure
at the bottom of the tubing: 
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And the answer to the second question is

The only difficulty with this particular problem is where to use the conver-
sion factors, and that is just a matter of practice and familiarity with the units.

Gas Columns

Frequently in casing design, it becomes necessary to calculate pressures
at various points in the well bore in the presence of a full or partial
column of gas. This is common in the design of intermediate and produc-
tion strings of casing. Unlike most liquids, we cannot take the density of
the gas to be constant over some interval in a well bore, because its den-
sity is a function of both pressure and temperature. There are numerous
ways to calculate gas density and pressures, and all depend on the type of
gas. Many charts and simple computer programs are available for the pur-
pose, and that is what most people use. However, to keep this text as
simple as possible, we use an approximation based on methane gas. The
advantage to this is that we need not know anything about the composi-
tion of the gas we encounter in a particular well, because methane is the
lightest of all the possible gases encountered in oil and gas wells (with the
exception of helium); hence, it almost always represents the worst case
load on the casing. In fact, a number of companies always use methane as
the gas in casing designs that require a gas load on casing. This makes cal-
culations easy for us because we can derive a simple formula for our use.

We start with the modified ideal gas law:

(2.37)
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and the relationship

(2.38)

where

We combine those two equations to give us an equation of state for the
density, ρ, of a gas:

(2.39)

We substitute this into equation (2.7) without the initial pressure, which is
not needed here, to give us a differential equation for the gas pressure as a
function of the vertical coordinate:

(2.40)

Separating variables, we get

(2.41)

The temperature is a function of the depth, but to keep things simple we
assume it is a linear function and that we may use an average temperature
as a constant. We also assume the compressibility factor is a constant.
This gives us
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(2.42)

The result of the integration is

(2.43)

which, when exponentiated, gives us

(2.44)

and finally

(2.45)
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One may use this formula as is, but it is a bit confusing when going from
oil-field units to SI units and vice versa. The ideal gas constant is nothing
more than a conversion factor for units of measure of the gas, and there are
many different numerical values. The normal units are energy/mole/degree
absolute temperature. That means that, in English units, the molecular mass
is in lb/mole, which must be converted to lbf/mole; and in SI units, it is in
kg/mole, which must be converted to N/mole. Add to that the value we nor-
mally assume to be the molecular mass; for methane, for instance, it is 16,
which in English units is 16 lb/mole, but in SI units it is 0.016 kg/mole
because the conventional metric description of the mole is 16 g/mole. So, to
alleviate some of the confusion, we modify equation (2.45) for our use in
this text as follows:

(2.46)
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We assume the following values for oil-field units:
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and for SI units

Those may not be the values of the ideal gas constant you are accustomed
to seeing, but they are consistent with the units we are using. Remember,
the ideal gas constant is only a conversion factor.

Note that it is inconsequential as to which points we label as point 1
and point 2, as in p1, h1 and p2, h2. As long as we are consistent in
assigning the correct vertical depths to the appropriate pressures, the signs
will be correct. For example, if point 1 is the upper point then 
will be positive and p2, at the deeper point, will be greater than p1. Like-
wise, if point 1 is the deeper point, then the difference in depths will be
negative and the pressure at point 2 will be less than at point 1. The cor-
rect pressure in this formula is absolute pressure rather than gauge pres-
sure, but for all practical purposes, it makes an insignificant difference
considering the magnitudes of casing load pressures and the approximate
nature of the formula itself and our application. For those reasons, we will
use gauge pressure in our casing design calculations. While this formula
is easy to use and is acceptable to most casing designers, many prefer to
use a more sophisticated computation done with a computer.

2.4.2 Buoyed Weight of Casing
To calculate the axial loads on casing, we have to find the weight of the
casing in the fluid that surrounds it. We already stated that we work with
the specific weight of casing as opposed to the specific mass, which is
listed in the published tables.

Weight of Casing in Air

In some casing designs, we use what we call the weight of the casing
string in air. However, strictly speaking, we actually mean the weight of
casing in a vacuum, since air is a gas and there is a difference in the pres-
sure on the top and on the bottom of a casing string suspended in a bore
hole containing only air. However, this buoyant force is relatively small
compared to the weight of the casing and usually ignored in practice. So
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when we speak of the weight of casing in air, we actually ignore all
buoyant forces on the casing string. To calculate the weight of a casing
string suspended vertically in air, we merely multiply the weight per unit
length times the length to get the weight of the string and the axial load at
the surface. 

Example 2–1 Axial Load of Vertical Casing in Air

Table 2–2 shows a 7 in. casing string with four sections having different
specific weights and wall thickness. We wish to calculate the weight of
this casing string in air.

We can write a formula for calculating the axial force at the top any
section in the string like this:

(2.47)

where n is the number of sections in the string. This formula provides for
the possible presence of some load on the bottom, Fo, in case there is a
tensile or compressive load at the base of the string, although this value is
usually zero. (Note that there is no summation when k < 1.) For this
example then, the calculation is as follows:

Table 2–2 Example 7 In. Casing String

Section Number Length, ft
Specific Weight,

lbf/ft
Internal Diameter,

in.

4 1000 32 6.093

3 4000 23 6.366

2 3000 26 6.276

1 1500 29 6.184

F F w L k nk o i i
i

k

= + =
=
∑ for 0 1 2

1

, , ,…
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The last value is the total weight of the unbuoyed casing string.

Weight of Casing in a Liquid

When the casing is hanging in a liquid, we must include the buoyant
forces on the tube to determine the weight of the string and the axial
loads. We already distinguished between the true axial load and some-
thing called the effective load. We saw that Archimedes’ principle gave us
the correct load at the surface but did not give us the true axial load at any
other point within the string, rather what we called the effective axial
load. Another factor to consider is that, in most casing string designs, the
wall thickness is not the same for the entire string, and that contributes
further to the inaccuracy of using Archimedes’ principle. To get the true
axial load, we must use the actual forces attributable to the weight of the
tube and the hydrostatic pressure at the points where it acts along a ver-
tical axis. We can illustrate this with a simple figure, Figure 2–10.

In the figure, we show a string of casing with different wall thick-
nesses. At each point where there is a vertical force due to the fluid
pressure, we labeled it with a node number, starting with 0 at the bottom
of the string. The true axial load changes at each node where the internal
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diameter changes. The true axial load at the bottom of each section (just
above each node) is given by 

(2.48)

Figure 2–10 Schematic of hydrostatic forces on a casing string.
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The true axial load at the top of each section (just below each node where
the internal diameter of the tube changes) is given by

(2.49)

where

Note that, in these formulas where summations take place over a range
from i = 1 to k or i = 1 to k –1, the summation terms are zero for k < 1 or
(k – 1) < 1, respectively. These two formulas can be posed in a number of
ways, but this form works well for a computer algorithm or a spreadsheet.
The easiest way to understand these two formulas is with an example.

Example 2–2 True Axial Load of Vertical Casing in a Liquid

Using Figure 2–10 as our example, let us assume all the casing in that
figure is 7 in. diameter. We assume that the fluid inside and outside the
casing has a specific gravity of 1.5 and there are no other sources of pres-
sure. Use the same casing string from Example 2–1.

We begin by calculating some of the values we will need in the for-
mulas. First, we calculate the values of the cross-sectional areas:
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Next, we calculate the pressures at nodes 0, 1, 2, and 3:
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Of course, we see that the pressure at the bottom of the casing is the same
on the inside as on the outside, but we showed the calculation just for
illustration. Next, we calculate the forces at the bottom of each section at
a point just above each node, where the area changes.

Then, we calculate the force at the top of each section (just below 
each node):
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To satisfy our curiosity let us now calculate the axial load using
Archimedes’ principle in the form of a buoyancy factor: 

We can write a formula for the buoyancy calculation as follows:

(2.50)

Using this formula we can now calculate the weight of the buoyed sting
using a buoyancy factor based on Archimedes’ principle:

Note first that, at node 0, the buoyant force is zero. This is a result of
using Archimedes’ principle and is something we discussed earlier. This
is the effective load and not the true load in the pipe. But, look at some-
thing else. We said that both methods would give exactly the same results
at the surface, but in this case, they did not. Why not? They differ by 755
lbf or about 0.4%, which is basically negligible for practical purposes.
One might think the difference in the two methods is due to rounding off
in the calculations, but it is not. The primary source for the difference is
the way we used the specific weight of the casing. The method we used to
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calculate the true axial load assumes all the weight is in the tube body and
pressure acts on the pipe where there is a change in diameter. What this
method fails to account for are the presence of the external couplings. The
weight of the coupling is averaged into the linear weight of the pipe, so it
is not missing from the formulation, but there is a net buoyant force in an
upward direction on each coupling, because the pressure on the bottom of
the coupling is slightly greater than the pressure on the top of the cou-
pling. If this is taken into account, the two methods give the same results
at the surface. But, remember that the weight per unit length of API
casing is calculated based on 20 ft joints with standard couplings, so
unless the joints exactly conform to that length and coupling type, then
either method will differ from the actual weight by some small amount.
Figure 2–11 shows a plot of the true axial load and the effective axial load
for this example.

2.4.3 Buoyed Weight of Casing in Inclined and Curved Well 
Bores

Casing rarely hangs vertically in an actual well bore. Most wells are
inclined to some extent, and the well bores are also curved. The casing is
partially or sometimes totally supported by the walls of the borehole.
Therefore, the axial load is that component of the gravitational body force
not supported by the bore-hole wall plus the friction along the bore hole.

Figure 2–11 True and effective axial loads for the example casing string.
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In this discussion, we ignore friction, which will be covered in detail in
Chapter 9. So, for our purposes here, the only force acting on the casing
are the body forces of the casing due to gravity and the hydrostatic forces
of the fluid in the well bore. Our particular interest for the moment is in
determining the axial load in the casing, but later, when we discuss fric-
tion, we also determine the contact force of the casing with the bore-hole
wall. If we look at a segment of casing in an inclined well bore, as in
Figure 2–12, we can see that it is easy to resolve the gravitational body
force into an axial force and a force normal to the bore-hole wall.

The axial force at the top of the segment is

(2.51)

where

In previous calculations, we always labeled the axial force with a sub-
script z to denote that it was along the vertical axis of our coordinate
system, but now we are going to use a subscript, s, to denote a curvilinear
coordinate or measure along the axis of the pipe, which may or may not
coincide with the vertical coordinate. This is fairly straightforward so far,
there are no buoyant forces to contend with. But, if we add buoyant
forces, which we must always do in a real well, how do they affect that
equation? Actually, in that case, it is fairly simple, in that we can put the
buoyant force into the value, , since no buoyant force along the walls
of the segment acts on the axial load. In fact, all we have to do is use equa-
tions (2.48) and (2.49) and substitute  for wi in those equations.
The problem with this, though, is that the inclination angle, α, is not likely
to be a constant. All we have accomplished is a formula for a straight sec-
tion of well with a constant inclination angle. We can generalize this for a
curved well bore, but it starts to get a bit messy. This is where a good
application for the effective load comes in. If, instead of the specific
weight of the casing, we use a buoyed specific weight, we calculate an
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effective axial load, which is easily converted to the true axial load. We
define the buoyed specific weight as

(2.52)

Then, the differential axial load at any point is

(2.53)

and the effective axial load is 

(2.54)

where

Figure 2–12 A segment of casing in an inclined well bore.

α
w

Fo

L

Fs

α
w

Fo

L

Fs
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To convert the effective axial load to the true axial load, we use the fol-
lowing relationships. When the pressure is the same on the inside of the
casing as on the outside,

(2.55)

and, where the inside pressure is different from the outside pressure,

(2.56)

where for both formulas

It may seem that it will be a bit difficult to integrate equation (2.54) for a
real bore hole, and while that is true, we address numerical methods for
doing that in Chapter 9. For an idealized well in a vertical plane, we may
make some assumptions, which we illustrate in an example.

Example 2–3 Buoyed Weight of Casing in a Curved Well Bore

Suppose we have a curved well bore, as shown in Figure 2–13, and are
going to use the casing string used in the previous examples and a mud
with 1.5 sg.

Before we start calculating axial casing loads, we need to get some
measured depths. We are given that the kickoff point (where the build or
curvature starts) is at 4000 ft and we call that length the length of the ver-
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tical section,  The well builds angle at a constant rate until it is
inclined at 30°  then remains constant until total depth. The measured
depth of the well is 9500 ft, as measured along the well bore path. What is
the length of the curved section? The inclination changed by 30°  so the
angle between a radius at the beginning of the curve and at the end of the
curve also is 30° . We are given that the radius is 1000 ft, so we can calcu-
late the length of the curved section of the well bore:

The length in the inclined section is then the measured depth less the
length in the vertical section and the length in the curved section. Note
that we had to change the angle in degrees to radians for this formula.
Also note that, whenever an angle appears outside a trigonometric func-
tion in a formula, it is almost always in radians not degrees. That will
always be the case in this text.

Figure 2–13 An inclined well bore.
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To calculate the load, it is necessary to know the specific weights and
lengths of casing in each of the three sections of the well. We might best
show that in a figure, as in Figure 2–14.

We determine the effective load in the casing string first, then convert
it to the true axial load. (Remember that we are not considering friction in
this example.) We start at the bottom and assume the casing is not sitting
with any weight on bottom, so that  = 0. Our buoyancy factor for 1.5 sg
mud is

Our bottom section of casing is 1500 ft of 29 lb/ft, and it is all in the
inclined section of the bore hole. If we integrate equation (2.54) over a
straight but inclined section, it gives us exactly equation (2.51). Using the
buoyed specific weight then, we get 

Section 2 is 3000 ft of 26 lb/ft casing, and all of it is in the inclined section
of the well:

Now Section 3 has a portion in the inclined section, 476 ft, a portion in the
curved section, 524 ft, and a portion in the vertical section, 3000 ft. Before
we set up this calculation, we must do something with equation (2.54) to
integrate it over this interval. Since the curvature of the curved section is
constant (it has a constant radius), we can substitute the relationship

 and change the limits of integration, so that it becomes
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(2.57)

The substitution we made is legitimate, but in this equation, it can lead to
different results, depending on how we label the inclination angles. Cur-
vature can be positive or negative and is defined as

But the radius of curvature can only be positive, hence the ± sign. So, for
equation (2.57) to work in our application, we must take the absolute
value of the difference in the sine functions. For a constant curvature and
constant buoyed specific weight, equation (2.57) is rewritten as 

Figure 2–14 Well sections and casing string sections.
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(2.58)

Now the effective load at the top of Section 3 is

Finally, at the top of Section 4, the effective load is

We can then calculate the true axial loads at the tops of each section. To
do this, however, we need to know the true vertical depth at the top of
each section, and that involves a bit of trigonometry. The top of Section 4
is at the surface, h4 = 0; the top of Section 3 is in the vertical section,
h3 = 1000 ft. The top of Section 2 must be calculated:

The top of Section 1 is at

ˆ ˆ ˆ sin sinF F w Rs o= + −α α2 1

ˆ ˆ ˆ cos ˆ sin sin ˆ

ˆ

F F L w w R L w

F

3 2 3 2 1 3

3 85125 47

= + + − +

= +

 incl  vertα α α

66 0 809 23 30 0 809 23 1000 0 30

3000 0

. cos . sin sin( )( )⎡⎣ ⎤⎦ + ( )( ) −⎡⎣ ⎤⎦
+ ..809 23

157920

( )( )⎡⎣ ⎤⎦
=  lbf

ˆ ˆ ˆ .F F L w4 3 4 157920 1000 0 809 32 183808= + = + ( )( ) =  lbf

h R L2 34000 4000 1000 30 476 30

4912

= + ( ) + = + +

=

sin cos sin cosΔα αincl

 ftt

h h L1 2 2 4912 3000 30 7510= + = + =sin cosα  ft



2.4  Oil-Field Calculations 73

And, finally, the bottom of Section 1 is

We can now calculate the pressures at each depth:

Since the pressure on the inside and outside are the same, we need the
cross-sectional area of each section of casing:

h h Lo = + = + =1 1 7510 1500 30 8809cos cosα  ft

p

p

p

4

3

2

0

1000 0 052 1 5 8 33 650

4912 0

=

= ( )( )( ) =

=

 lbf/in

 lbf/in

2

2. . .

.0052 1 5 8 33 3192

7510 0 052 1 5 8 33 481

( )( )( ) =

= ( )( )( ) =

. .

. . .

 lbf/in2

p 880

8809 0 052 1 5 8 33 57240

 lbf/in

 lbf/in

2

2p = ( )( )( ) =. . .

A

A

A

4
2 2

3
2 2

2

4
7 00 6 094 9 317

4
7 00 6 366 6 655

4
7 0

= −( ) =

= −( ) =

=

π

π

π

. . .

. . .

. 00 6 276 7 549

4
7 00 6 184 8 449

2 2

1
2 2

−( ) =

= −( ) =

. .

. . .A
π



74 Chapter 2—Basic Calculations and Hydrostatics

Next we calculate the true axial load at the top of each section:

Finally, we calculate the true axial load at the bottom of each section:

We can plot the true axial load at the top and bottom of each section and
the effective axial loads. Keep in mind that the load between the top and
bottom of Section 3 is not a straight line, as we show in Figure 2–15,
because of the well bore curvature, but we calculated the values only at
the top and the bottom of that section. Although Figure 2–15 and
Figure 2–11 appear similar, the values are different.

We did not account for friction in our calculations, meaning the
sliding friction running the pipe into the hole or picking it up from
bottom. If we could rotate the pipe several revolutions to remove the
sliding friction, the axial loads would look like the figure. 
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2.4.4 The Ubiquitous Vacuum
This section should not even be here, except that it seems to pop up in oil-
field thinking time and again. A perfect vacuum is zero absolute pressure
and does not exist. In oil-field terms, that is roughly 15 lbf/in.2 less than
atmospheric pressure. A near perfect vacuum does not cause casing to
collapse. It does not suspend a significant column of fluid in an annulus. I
will not mention any specific instances (and I know of several) because, to
this day, those involved are embarrassed. If you are close enough to an
oil-field disaster that you have to consider a vacuum, then you are too
close to worry about it.

2.5 Closure
In this chapter, we covered several definitions and the conventions we use
for units and formulas in the remainder of this text. You may wish to refer
back to this chapter from time to time, because I do not intend to remind
you of those conventions in later chapters.

We may have spent an inordinate amount of time on basic hydro-
statics, especially as the subject applies to oil-field casing in well bores.
One reason for this is that it is an important topic: a secondary reason is
that there seems to exist a certain degree of confusion in the oil field about
hydrostatics, especially in regard to buoyancy. 

Figure 2–15 True axial load and effective axial load in curved well bore 
example (without friction).
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CHAPTER 3

Casing Depth and Size Determination

3.1 Introduction
Arguably the most critical step in casing design is determining the setting
depths for the various casing strings. Setting the wrong size casing at the
wrong depth can preclude the well ever reaching its objective. Figure 3–1
is a schematic of a typical well showing four strings of casing: conductor
casing, surface casing, intermediate casing, and production casing. Why
does this well require four strings of casing? How is that determination
made? How are the setting depths determined? How are the casing sizes
determined? This chapter addresses those questions.

3.2 Casing Depth Determination
Casing depth is determined by a number of parameters, most of which we
cannot control. What are those parameters?

3.2.1 Depth Parameters
When we make a determination of the setting depths for the various casing
strings in our well several parameters must be considered, including 

• Pore pressures (formation fluid pressures).

• Fracture pressures.

• Experience in an area.

• Bore-hole stability problems.

• Corrosive zones.

• Environmental considerations.

• Regulations.

• Company policy.
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Some of these criteria may overlap in practice. For instance, many regula-
tions to protect fresh water sources near the surface might also be consid-
ered environmental parameters. While this is a text primarily about
casing, two of these criteria, pore pressures and fracture pressures, are so
important that we discuss them in detail to understand their importance
and what they represent.

Figure 3–1 A typical casing installation.

Conductor 150 ft

Surface 3000 ft

Intermediate 10500 ft

Production 14000 ft
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Pore Pressure

Pore pressure (also called formation pressure) is the pressure of the fluid
that fills the pore spaces (or voids) in the rock. This pressure normally
determines the lower limit of the drilling fluid density (exceptions are
underbalanced drilling operations or bore-hole stability problems). All sedi-
mentary rock contains some type of fluid in the pore spaces and this fluid
may be in the form of liquid or gas. In general, the pressure of the fluid
depends on the depth of the rock and the density of the fluid, in particular, it
depends on the connectivity, if any, of the pore spaces to the surface.
Figure 3–2 illustrates the depositional process. It is a simple schematic sim-
ilar to one used by Terzaghi and Peck (1948) to illustrate the nature of soil
compaction. 

The cylinder contains porous rock and liquid. A downward force is
applied to the piston, representing the weight of subsequent layers of rock
(called overburden) deposited above the sample. As the force or weight is
increased with increasing deposition, the rock in the cylinder is com-
pressed, forcing some of the fluid into the drain tube, whose length repre-
sents the depth of the rock below the earth’s surface. If the fluid can flow
freely into the tube and to the surface, it can be seen that, no matter how
deep the rock or the weight of the overburden, the pressure of the fluid in
the pore spaces are equivalent to the hydrostatic pressure of the fluid
column in the tube. This closely models the situation in many formations
that have porosity or channels that freely connect to the surface (though
the connection may be far from obvious). In this instance, the pore pres-
sure of the formation is equal to the hydrostatic pressure of the fluid
column between the formation and the surface. Typically, such a fluid
contains dissolved minerals, such as salt, that make the density heavier
than fresh water. 

In general, the path through pore spaces of various formations from
some depth to the surface is not quite so direct, and there may be consid-
erable variation if the deposition, for instance, is occurring at a faster rate
than the fluid can escape. This is illustrated in Figure 3–3, where we have
placed a valve or choke in the drain tube. 

If we restrict the rate at which the fluid is allowed to escape as the for-
mation is compacted by the increasing overburden, then the pressure of the
fluid in the cylinder will be higher than in the first illustration because of
the restriction of the rate at which the fluid is allowed to escape. Such a
restriction could be caused by very low permeability formations between
the sample and the surface, for instance. If the depositional rate slows or
stops, that pore pressure might eventually equalize to the hydrostatic head
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of the fluid column, but such a process might require several hundred
thousand years or so. In that case, we might consider, for all practical pur-
poses, that the escape tube is totally sealed, depending on where in the age
of the process we drill into the formation. Then, where the fluid has been
trapped or its escape severely restricted, we consider the pore pressure to
be abnormally high or overpressured. It can be considerably higher than in
the first model. We call such a formation an undercompacted formation,

Figure 3–2  Soil compaction model.

Figure 3–3 Compaction model with restricted drainage.

F

F
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meaning that it has not compacted to a normal density for the given
amount of overburden pressure, because some of the fluid has been trapped
and is also contributing to the support of the weight of the overburden. The
fluid pressure could vary considerably from slightly above normal to an
upper limit, which would be a pressure equivalent to the weight of the
overburden. We could write this formation pressure as

(3.1)

where p is the formation pressure, g is the local acceleration of gravity, ρ
is the mass density of the rock, z is a vertical coordinate axis, and the
limits of integration are from the surface to some depth, h. Four obvious
consequences of these two illustrations are that 

1. The density of an undercompacted formation is less than that of a 
normally compacted formation, since it contains a greater 
percentage of fluid. 

2. If the fluid is saltwater, the resistivity measurement from an 
electric log is lower than the normal formation, again because it 
contains a greater percentage of fluid. 

3. The sonic travel time in the undercompacted formation is 
reduced.

4. If we are drilling through the two formations, the drilling rate is 
faster through the undercompacted formation, because it is less 
dense, and the differential pressure between the drilling fluid and 
pore pressure is less, hence the drilled cuttings are more easily 
removed from the formation face. 

These four mechanisms are the primary means we have to detect the pres-
ence of abnormally high pressured formations. While this fluid entrap-
ment mechanism explains most of the abnormally high pressured
formations in the world, there are other causes, such as a long gas column
in a steeply dipped reservoir, artesian flow, a reservoir that has been pres-
sured by flow from a higher-pressure reservoir during uncontrolled sub-
surface flow in a blowout, or flow in an uncemented casing annulus. We
have no means to detect these types of situations other than direct mea-
surements or previous knowledge of the situation.

p g z
h

≤ ∫ ρd
0
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On the other hand, there are also situations where the formation pore
pressures are abnormally low, that is, less that the gradient of saltwater.
These cases generally are caused by depletion of the normal pore pressure
by production of the fluids from the formation. This type of situation usu-
ally is known in advance of drilling—but not always.

Another quite important point is this. Much of what we know about
formation pore pressures in a given area seems to fail miserably at
shallow depths. A number of rigs have been lost because of drilling into
shallow pockets of trapped gas. The uncertainty and unpredictability of
the presence or absence of these small shallow gas accumulations often
require that small diameter pilot holes be drilled in some areas to ascertain
their presence prior to starting a well. At the other extreme of low pres-
sure, there was at least one occurrence of a rig drilling into a shallow
cavern that swallowed the entire rig and all the water from a small lake
(the “cavern” in that case happened to be a human-made mine shaft). The
data that one has available for casing point selection seldom includes data
near the surface, and one should never assume that the absence of such
data means that pore pressures near the surface are of no consequence.
There are various methods for determining or estimating the magnitude of
pore pressures in well bores, and we are not going into those methods. For
this text, we assume that we already have access to reasonable pore pres-
sure estimates for our bore hole, and after reading this, we have some fun-
damental understanding of what it means.

Fracture Pressures

The subject of fracture pressures for drilling mud programs and casing
design is quite complicated—a lot more so than many realize. This is pri-
marily because there is considerable confusion as to what is meant by
fracture pressure. One true definition is that the fracture pressure is the
pressure at which a formation matrix opens to admit whole liquids
through an actual crack in the matrix of the rock as opposed to invasion
through the natural porosity of the rock. This sounds straight forward, but
some of the things we often hear called fracture pressures are not true
fracture pressures by that definition.

The pressure at which the matrix of a rock physically fractures and
admits the entrance of whole liquids depends on a number of things. Here
is what we normally expect when we think about that definition of frac-
ture pressure:
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• The well bore liquid cannot enter the formation pore spaces prior 
to fracture (e.g., a filter cake building mud or an impermeable 
formation such as shale).

• The formation is in a state of compression from an in situ stress 
field (due to overburden, lateral constraints, or tectonic activity).

• The formation matrix has some amount of cementation and, 
hence, some amount of tensile strength (may be relatively small 
though).

For this formation to be hydraulically fractured, the pressure of the liquid
in the well bore has to exceed both the near-well-bore stress field that is
compressing the rock at the point of fracture and also the tensile strength
of the rock matrix at that point. The near-well-bore stress field usually is
not the same as the in situ stress field because the rock deforms slightly
when some of it is removed to form the bore hole; consequently, the stress
field near the bore hole changes as well. Once the fracture is initiated, the
fluid enters the fracture and the fracture propagates at a lower pressure
than the initial fracture pressure. The reason that the propagation pressure
is lower than the original fracture pressure is that, once the fracture is
open, the fluid pressure acts like a wedge. In other words, mechanical
advantage is gained as the fracture length grows (up to a limit).

That definition is widely accepted. It is normally the way we interpret
“fracture pressure,” and that is what we usually assume when we design
casing. However, the “fracture pressure” we utilize at the time of casing
depth selection and casing design often comes from several sources, such
as leak-off tests, integrity tests, fracture gradient curves and correlations,
pilot hole mini-fracture tests, and production-stimulation fracture jobs.
Often the values obtained from these sources are not what we assumed
from the preceding definition. Additionally, there are certain conse-
quences of that definition of fracture pressure that we do not always
anticipate, such as

• Once fractured, a formation as just described can never be 
pressured again to the original fracture pressure in that well bore, 
because it has no tensile strength at that point. On repressuring, 
the formation will open at the fracture closure pressure, because 
the tensile strength, if any, is now permanently lost. The fracture 
closure pressure is a function of the in situ stress field and not the 
rock itself. The original tensile strength at the point of fracture is 
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never restored. The rock is broken, and it stays broken. (Note: 
Some mud systems may form plugs that can sometimes 
effectively divert the point of fracture to a different point in the 
rock matrix and cement can sometimes restore some tensile 
strength at a point.)

• The fracture pressure also depends on the orientation and 
inclination of the bore hole in most cases. The reason for that is 
that the principal in situ stress components generally are not equal 
in magnitude and their orientation in relation to the well bore can 
vary. That is a complicating factor, in that the fracture pressure is 
commonly reduced as the bore-hole inclination increases. The 
fracture pressure in an inclined well bore also varies with the 
direction of the well bore as well as its inclination.

Here are some other situations to consider about fracture pressure:

• Some formations have no tensile strength; for example, 
unconsolidated sandstones, formations with micro fractures, and 
faults.

• A well-bore fluid actually can enter the pore spaces under 
pressure prior to fracture (e.g., fracturing a porous formation with 
a clear fluid such as brine water).

In the case of no tensile strength, the fracture pressure depends entirely on
the in situ stress field. It opens at the same pressure each time, so that
fracturing it does not reduce its strength, as in the previous case. This is
why, in many areas, it is perfectly “safe” to fracture a zone while drilling,
because the “strength” of the formation has not been reduced. In actuality,
the formation has no tensile strength; the compressive in situ stress field is
what holds it together.

In the case of the pressured fluid entering the pore spaces before frac-
ture occurs, the fracture pressure usually is lower than in the earlier defi-
nition, because there is mechanical advantage to the pressurized fluid in
the pore spaces. 

So we have seen that fracture pressure depends on well-bore orienta-
tion to the stress field, the type of fracturing fluid we use, and whether or
not the formation has any tensile strength. If we are aware of those situa-
tions, then we are better able to understand exactly what the fracture pres-
sure means. However, fracture pressure values come from various sources
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and we have to understand the nature of the sources to understand what
the values mean.

 One source of fracture pressures comes from fracture gradient curves
and similar correlations. These sources usually are accurate enough for
casing design and mud programs in vertical wells, but many of them are
based on erroneous assumptions about the mechanics of rocks. They typi-
cally assume that the horizontal in situ stress is uniform in all directions
and the fracture gradient can be calculated from knowledge of the over-
burden density (from density logs or estimated density gradients) and
Poisson’s ratio of the rock. This assumes that the rock is in a state of plane
strain, in that it is perfectly constrained laterally from expansion due to the
weight of the overburden. First of all, it is rare that the horizontal principal
stress components of the in situ stress field are equal in magnitude, the
mere presence of faults and fractures precludes this. And in those cases,
the values for Poisson’s ratio used in those calculations are correlation
values not actually Poisson’s ratio. To further complicate matters, these
methods calculate the fracture pressure based on the in situ stresses. When
a bore hole is drilled in rock, the rock around the well bore deforms, and
the in situ stress field in the proximity of the well bore changes. It then
depends on whether the fluid can enter the pore spaces prior to fracture as
to how the fracture pressure is calculated. Typically these methods use the
in situ stress field prior to the bore hole being drilled. The consequence of
this is a fracture pressure based on a non-filter-cake-building fracture fluid,
which is not what is used for most drilling applications. But, despite the
technical problems with these methods, they are fairly successful in ver-
tical and near vertical wells in unconsolidated formations and give good
approximations, but beware that the engineering assumptions on which
they are based in general are not true.

We come to the often-used “fracture pressure” called the leak-off
pressure. Because there are differing opinions as to what constitutes a
leak-off pressure, Figure 3–4 is an illustration of a pressure recording of a
mini-fracture test (three or four barrels) done in a vertical pilot hole.

In the figure, a small fracture test was done in open hole by pumping a
few barrels of mud into a formation at constant rate with an open-hole
DST tool and a down-hole pressure recorder. The test was done in a ver-
tical well bore, so that the fracture closure is the same magnitude as the
minimum horizontal in situ stress component. This particular formation is
an example of our first definition: It has a definite tensile strength (the dif-
ference between the fracture pressure and fracture closure pressure) and is
impermeable to the fracture fluid (the bleed-down after pump shutoff was
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accomplished by opening a valve at the surface). This test was performed
to determine the fracture pressure of the formation (B), the fracture clo-
sure pressure (D), and the fracture directional orientation (from an
imaging log run later). That is all the useful information derived from a
test like this, but note a point (A) on the curve that is often called the leak-
off pressure. Most leak-off tests are conducted in a similar manner, except
the pressure is often recorded at the surface and pumping usually is
stopped before reaching the actual fracture pressure of the formation. The
pertinent question then is, What is the physical significance of the “leak-
off pressure”? The truth of the matter is that, in cases like this, there is no
particular significance to this point, as it is unrelated to both the fracture
pressure and the fracture closure pressure. The only true thing one can say
of this definition of a leak-off point in a test like this is that it is the point
at which the pressure-volume relationship of the bore hole becomes sig-
nificantly nonlinear. If the borehole is linearly elastic, the pressure-
volume relationship cannot possibly be linear anyway, since the radial
strain is a linear function of the pressure, but the volume cannot be. But
that nonlinearity is quite small in the elastic range, and we usually can
ignore it. You will hear several different explanations for this nonlinear
point or “leak-off point.” One is that it is the point at which “whole mud
begins to enter the formation.” That is pretty hard to believe, as whole
mud (which builds a filter cake) cannot enter a formation except by frac-
ture—the particles are too large. And once a fracture initiates, it gets big
very quickly. There are cases where permeabilities on the order of several
Darcies allow the entrance of “whole mud,” but in that case, lost circula-

Figure 3–4 A mini-fracture test for bore-hole stability analysis.
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tion is present before the test even begins. Another popular explanation
says that it is the time during which the fracture is propagating “down the
hole” before it begins to propagate radially from the bore hole. That is a
bit difficult to imagine also, in that a surface fracture under constant pres-
sure propagates with the speed of a Rayleigh wave or at about 25% of the
velocity of sound in the rock; so it might propagate 60 ft of open hole in
about 0.02 sec. Can you read that time interval on any chart? The problem
is that, somewhere along the way, an idea has become entrenched that
rock behaves like a linear elastic material all the way up to the point of
failure. Possibly, this comes from seeing yield points on uniaxial stress-
strain curves for some metals. But those metals usually do not fail at the
onset of nonlinearity and, in general, neither does rock. This does not
address the possible nonlinear compressibility of the mud used in the test.
As a consequence, a leak-off test is unfortunately meaningless as far as
determining anything about the rock properties or the stress field; how-
ever, it works for drilling, because the leak-off pressure is a safe value for
maximum mud densities. In other words, the leak-off pressure is less than
the actual fracture pressure, therefore it is a safe upper limit on the drilling
fluid density, so there should be no reason not to use it in well planning or
casing depth selection, as long as we understand what it is and is not.

As mentioned earlier, the subject of fracture in rocks is exceedingly
complicated and far beyond what we need for casing design. The point of
all this discussion is to instill awareness such that, when we speak of frac-
ture pressure in casing design, we have a clear idea of what we mean and
realize that the values we often use are not necessarily what they are sup-
posed to represent. 

 It is not within the scope of this text to detail the various methods for
quantifying pore pressures or fracture pressures. This brief description at
least may give a little insight into the subject for those whose backgrounds
do not include any study of geology or reservoir mechanics. A number of
reliable sources are available for quantifying pore pressures and fracture
pressures for well planning. Unfortunately, the majority of those are local to
the Louisiana and Texas Gulf Coast. The methods work anywhere, but the
correlations are quite restricted geographically, and my reluctance to
include any here is motivated strictly by a desire to keep any part of this text
from being restricted to a limited geographical area. A readable source of
information on rock mechanics is the book by Fjær et al. (1992). Another
good source for understanding and quantifying pore pressures and fracture
pressures is the book by Fertl (1976). In any event, one should be aware that
the pore pressure and fracture pressure data are only approximate. 
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Other Parameters

The other parameters listed previously are self-explanatory and need little
elaboration. However, a few comments may be in order.

Experience in an area should never be casually tossed aside in favor
of pore pressure and fracture pressure data. There usually are good rea-
sons that casing setting depths have become standardized in a particular
area. Before making any changes, one should investigate those reasons
thoroughly.

Bore-hole stability problems exist in many areas. Casing is not the
only solution in but a few cases, so all possibilities should be evaluated.

Regulations should never be violated. That should not have to be said,
but many would be surprised to learn how frequently violations actually
occur. In the long run, the environment is a lot more important to the
future of human existence on this planet than we seem to appreciate today.

 Casing setting depth is determined by the requirements to maintain
the integrity of the bore hole and protect the environment. Yes, it is that
simple. Or perhaps we should say it is that complicated.

Casing String Configuration

Once we determine the depths of the casing strings, we still have several
alternatives. Figure 3–5 shows three possible configurations for a well
similar to the one in Figure 3–1. The first shows a production casing
string. The second shows a production liner, where the intermediate string
also serves as part of the production string. The third shows a tieback
string inside the intermediate string and connected to a liner at the bottom
of the intermediate string. One can see that the second option might save
the operator money by eliminating a full production string, but why would
an operator elect to choose the third option as opposed to the first or
second? One reason might be to reduce the weight of the final string and
save money using a lower-tensile-strength casing. Of course, that has to
be more saving than the additional cementing and equipment cost and
additional rig time required. However, here is a typical situation for
choosing the third option. We are drilling a high-pressure well and the
intermediate casing is required to contain the high-density mud while
drilling the lower part of the hole. Suppose it takes a few weeks to drill the
hole below the intermediate casing, so there may be considerable wear
from the drill string on the intermediate string. This means we have to rule
out option two because the intermediate casing may not be able to contain
the pressures required of a production string due to loss of wall thickness
from the wear. In this case, the first option usually is cheaper than the
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third, which requires more time, more cement, and more equipment, so
we still see no reason for selecting the third option. Consider two more
things though. Remember that we said that it was a high-pressure well.
The operator wants to be assured that the casing above the cement does
not leak and the best way to assure this is to hydrostatically test the casing
connections as the casing is being run in the hole. This cannot be done
with a full string of pipe because the static time required to test each con-
nection probably would allow the casing to become stuck before it gets to
bottom. This would then be an extremely costly situation that would
require another liner of a smaller diameter than the production casing. So,
while the third option is not common, there often are very good reasons
for doing it. Further, many wells require two liners instead of one, and the
tieback string is always a preferred option in that case. There are many
possibilities. Well conditions and costs dictate the actual choices. We dis-
cuss those choices in more detail later. For now, we discuss the require-
ments particular to the individual types of casing strings.

3.2.2 Conductor Casing Depth
The conductor casing is the largest diameter casing run in the well. As
already mentioned, it often supports the weight of the subsequent tubes
run in the well bore and maintains some minimal amount of bore-hole
integrity while drilling the surface hole for the surface casing. Individual
wells may require two conductors, one a structural conductor to support

Figure 3–5 Three possible configurations.
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the wellhead and casing, another to provide bore-hole integrity while
drilling the surface hole. 

Conductor casing may require drilling a hole in the ground and
cementing it in place, or it may be driven into the ground with a diesel
pile-driving hammer. The criteria for selecting the depth of the conductor
can be very simple or very complicated. On the simple side, we want the
conductor deep enough to prevent washing out under the rig while drilling
the surface hole. In most of these cases, the first casing head is attached to
the surface casing once it is in place and cemented so the conductor serves
no further purpose. For many shallow wells with hard surface soils, the
conductor may be set at depths of 50 ft or so, some times 100 ft. On the
other hand, in areas where the surface soils (or ocean bottom) are
extremely soft, it may be necessary to set the conductor 200–500 ft below
the surface (or ocean bottom) just to drill the hole for the surface casing.
In some situations, the surface formations are so incompetent or problem-
atic that two strings of conductor casing may be required. In other cases,
the conductor casing is also a support structure for the well and must sup-
port a small platform attached to the wellhead and some minimal amount
of production equipment; this is not as uncommon as many might think,
hundreds of these wells exist in shallow waters. While conductor pipe
usually is considered the simplest of the casing strings we will run in our
well, it often is the most complicated in terms of both setting depth and
design. The setting depth of conductor, in many cases, must be deter-
mined by soil bearing tests and coring. This gets more into the realm of
the civil engineer than the petroleum engineer’s domain. Most companies
have their own specifications or they rely on the standard practice in the
area that has already proven successful.

Unfortunately, no handy formulas are available for determining the
setting depth of conductor casing. Just too many variables and complexi-
ties must be considered here. That probably sounds like an avoidance of
the issue, and it is. About the only guide we can offer in the absence of soil
bearing tests similar to those performed for foundations of bridges, tall
buildings, and similar structures is to use what has proven successful in the
area. And as much as we hate to say it, that brings us to a rule of thumb.

In the absence of soil mechanics data and analysis, the only way to reli-
ably select the depth of conductor casing is to use the depth already proven
successful in the area. In other words, do what everyone else does. The
main thing is that, if you do not have data to support your choice, do not
attempt to set your conductor casing at a lesser depth than is standard in an
area. If it is a critical well and there is nothing in the area, then get soil data.



3.2  Casing Depth Determination 91

3.2.3 Surface Casing Depth
A number of factors affect the setting depth of surface casing:

• Pore pressures.

• Fracture pressures.

• Depth of freshwater bearing zones.

• Legal regulations and requirements.

Which of these do we choose? Which are the most important? The answer
is almost always the one that requires the deepest casing string. Strictly
from a design point of view, the first two are the most important: they are
related and are our basis for maintaining bore-hole integrity. We intend
that to include well safety. The last two may also be related. Protecting
surface freshwater sands is of extreme importance in populated areas, and
in truth, it should be everywhere. Regulations require this in most areas
now. However, it sometimes is possible to obtain a variance from the reg-
ulations if the freshwater sands will be protected by the next string of
casing. Damaging a freshwater aquifer is not only a bad thing to do; in
some parts of the world, it could put your company out of business!

The question of regulations, as already mentioned, usually is a matter of
protecting freshwater aquifers, but in many cases, regulations also address
safety aspects of setting sufficient surface casing. Unfortunately, regulations
do not always take specific situations into account, and they may require
more casing than is really needed and sometimes less than what is needed.
In those cases, it is best to consult with regulatory agencies as to what
exceptions and variations from the regulations might be possible.

Aside from the regulations, the surface casing must allow us to drill to
the next (or final) casing point with the mud density required to contain
the formation pressures encountered, so as not to cause fracture failure of
the exposed formations near the upper part of the hole. If more than one
additional string of casing (an intermediate casing string) is required, then
the two become interdependent as to setting depths.

3.2.4 Intermediate Casing Depth
The most common cause for needing intermediate casing is that the bore
hole below the surface string may require a mud density too high (or
sometimes too low) for the formations between the final drilling depth
and the surface casing depth. A high mud density may fracture exposed
weak zones or a mud density too low may allow higher-pressured zones to
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flow into the well bore. Additional reasons for running intermediate
casing include the presence of unstable zones and corrosive zones. Insta-
bility in some zones, usually shale, may make it impossible to drill to total
depth without isolating these zones. The presence of corrosive zones may
require isolation to protect the production string. 

3.2.5 Setting Depths Using Pore and Fracture Pressures
Aside from regulations and known problem zones, casing depths typically
are selected using formation pore pressures and formation fracture pres-
sures, and that is what we address now. The best way to understand how
these two parameters are used is to make a plot of pore pressure and frac-
ture pressure versus depth. Figure 3–6 is a plot of the two parameters for a
simple well.

The figure shows a plot of the formation pore pressure versus depth
on the left and the fracture pressure on the right. Note that the pressure is
given in terms of equivalent mud density (specific gravity here) to make
the plot more easily used by drilling personnel. Drillers use plots like this
to determine mud densities required at various depths for drilling the well.
The mud density must be slightly higher than the formation pressure to
prevent formation fluids from entering the well bore; at the same time, the
density must be less than the fracture pressure so that the drilling fluid
does not fracture and enter the formations. The lines shown in the chart do
not include any safety margins. Drillers typically drill with the density
slightly higher than that required to balance the formation pressures. This
allows some safety margin, especially when making trips because the
action of pulling the pipe tends to cause a negative pressure surge or a
reduction in the hydrostatic pressure while the pipe is in motion.

Likewise drillers like to keep the maximum density slightly lower than
the fracture pressure because running the drill string back into the hole
causes a positive surge pressure, but more important, the maximum also is
considered a “kick margin,” so that during a well control event, the forma-
tion is not fractured in the process of killing the well. Different companies
have their own policies on the amount of safety margin required, and it
may vary with type and location of individual wells. In Figure 3–7, we use
a margin of 0.06 specific gravity (~0.5 lb/gal or 60 kg/m3).

The figure shows the addition of these two safety margins. We can see
that the mud density required to contain the pore pressure plus the safety
margin at 12,000 ft is 1.4 sg, but above 1700 ft, that mud density begins to
exceed the kick margin. In other words, we cannot drill safely to 12,000 ft
in the well unless the hole is cased down to 1,700 ft or more, because the
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Figure 3–6 Pore pressure and fracture pressure plot used in selecting casing 
setting depths.

Figure 3–7  Safety margins added to pore pressure and fracture pressure.
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mud density required to contain the pore pressure at bottom is greater than
the fracture pressures at the surface (including the safety margins). That is
exactly how we determine the setting depth of the surface casing in this
well (Figure 3–8).

If we start at the mud density at 12,000 ft (point a) and draw a line
vertically until it intersects the kick margin line (point b) then horizontally
to the vertical axis (point c), we can read the setting depth of the surface
casing, which in this case is about 1700 ft.

This particular well requires only a surface casing string at 1,700 ft
and a production string at 12,000 ft. If the surface casing depth of 1700 ft
meets the regulatory requirements for this well, then our setting depth
selection is complete. If the regulations require more casing, say, 2500 ft,
we simply move our surface casing depth to 2500 ft and it will give us
more safety margin in our mud densities as far as a kick is concerned.

This is a relatively simple well. But, before we dismiss it as trivial,
that is exactly the circumstance for the vast majority of all wells drilled in
the world. That said, we now look at an example in which an intermediate
string is required.

Figure 3–8 Selection of casing setting depths.
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Example 3–1 Casing Depths

In this example (see Figure 3–9), we see that the mud density of 1.83 sg
required at 14,000 ft exceeds the kick margin at all depths above
10,500 ft. So, we must set a string of casing at that depth. Moving hori-
zontally to the left, we see that the mud density required at 10,500 ft is
1.42 sg. This mud density exceeds the kick margin at all depths above
3000 ft. So 3000 ft becomes the surface casing depth.

This is a straight forward procedure, but sometimes it can be compli-
cated by depleted zones that have lowered pore pressure and fracture pres-
sure but are located among normally pressured zones. Some situations
may require more than one intermediate casing string, in which case, we
typically install a liner (usually called a drilling liner) before reaching
total depth rather than a second intermediate string. There are many possi-
bilities, but that is the basic procedure.

Figure 3–9 Casing depth selection for example well.
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Next Step

After determining the number of casing strings required and the setting
depths, the next step in the design procedure is to select the sizes of casing
required. What size casing and what size bits do we require?

3.2.6 Casing Size Selection
Once the setting depths have been determined the next step is obviously to
select the sizes of the casing strings to be set. The sizes depend on a
number of things. 

Two important things to know about selection of casing size:

• Hole size determines casing size.

• Hole size at any point in the well except the surface is determined 
by the previous string of casing.

This means that, in selecting casing size, we usually start with the casing
size at the bottom of the hole and work to the top.

The size of the last string of casing run in a well generally is deter-
mined by the type of completion that will be employed. That decision
usually is the function of an interdisciplinary team of reservoir, produc-
tion, and drilling personnel. This decision is based on numerous criteria,
so we assume, for our purposes, that the size of the last string is predeter-
mined and proceed from that point. From the standpoint of drilling, our
input into that process is to assess the risks and allow for alternatives. For
example, if we know there are serious hole stability problems in an area
and our drilling experience in the area is limited, we may be well advised
to recommend a final size that is large enough for us to set an extra string
of casing or liner and still reach the objective with a usable size of hole for
a good completion. This point unfortunately too often is overlooked in the
desire to keep well costs low.

Once we know the diameter of the final string of casing or liner, the
process proceeds like this:

• Determine the hole size (bit size) for the final string of casing.

• Determine what diameter casing allows that size bit to pass 
through it. That is the size of the next string of casing.

• Repeat the procedure until all the hole sizes and casing sizes have 
been determined.
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Many times in actual practice, casing sizes are determined by what is
readily available in the company’s, partner’s, or vendor’s inventory and
delivery times. The cost of leaving surplus pipe in inventory or excessive
delivery times often supersede any optimum design based strictly on engi-
neering calculations.

Precaution: After the casing strings have been designed be sure to
check the drift diameters to be certain that the desired bit sizes can be
accommodated.

3.2.7 Well Bore Size Selection
What is the proper bore-hole size for various sizes of casing? What do we
require of the borehole size?

• A bore hole must be large enough for the casing to pass freely 
with little chance of getting stuck.

• There should be enough clearance around the casing to allow for 
a good cement job.

• In general, the bigger the bore hole, the more costly it is to drill.

• There are no formulas for determining the ideal bore-hole size.

Selecting the bore-hole size is based primarily on current practices in the
area or areas with similar lithologies. There are a number of charts and
tables in the literature, some good for some areas, but greatly lacking for
other areas. The best advice we can offer is to use what is common prac-
tice in the area, unless there is good reason to do otherwise. No matter
what specific charts we suggest here, they going to be wrong for some
particular locale or application. That notwithstanding, Figure 3–10 and
Figure 3–11 illustrate some typical choices. One chart is for hard rock and
the other is for unconsolidated rock.

Figure 3–10 starts with the last string of casing or liner and works
downward to the first casing string of the well. You can see on this chart
there are many options even for those situations where the same size liner or
casing is to be run. In general, hard rock offers us more choices, and clear-
ance between the casing and bore-hole wall can be less than for unconsoli-
dated wells. Figure 3–11 is a similar chart for unconsolidated formations.

Note, in Figure 3–11, there are still some options, but not as many. A
few may not be available even though shown on the chart. For instance,
on the fourth row from the top it shows that either an 8½ in. or 8¾ in. bit
may be used from 9⅝ in. casing. That may be true in some cases, but if
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the 9⅝ in. casing string contains any 40 lb/ft or heavier pipe, then the 8¾
in. bit cannot be used. What is common practice in one area may not work
in another, because formation pressures may require a heavier pipe.

Example 3–2 Casing Size Selection

Continuing with the same example we just looked at, assume that we have
determined the following casing depths:

Surface casing = 3,000 ft

Intermediate casing = 10,500 ft

Production casing = 14,000 ft

Figure 3–10 Typical bit and casing sizes for hard rock formations.
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The production engineers tell us they require a production casing diam-
eter of 7 in., so the production casing size is determined. Assume that the
well is in an area of unconsolidated formations. Use the soft formation
chart to determine the intermediate casing size, the surface casing size,
and the conductor casing size:

Intermediate casing = 9⅝ in.

Surface casing = 13⅜ in.

Conductor casing = 20 in.

Figure 3–11 Typical bit and casing sizes for unconsolidated formations.
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Although not shown in the chart as a possible path, some operators in
areas where bore-hole stability is a serious problem elect an alternative for
7 in. casing as follows:

Intermediate casing = 10¾ in.

Surface casing = 16 in.

Conductor casing = 24 in.

That choice would be a case where experience in a particular area might
influence the decision in order to allow more margin for the effects of
anticipated problems.

3.2.8 Bit Choices
Obviously, from the preceding charts, we select the hole size for our par-
ticular casing and that automatically sets our bit size, too. While that is
true, another aspect to the bit sizes should be mentioned. Those charts are
based on the most commonly available bit sizes. There are special cases
where it will be necessary to use an unusually thick wall casing, and you
find that the common bit used in that casing will not work—the bit is too
large. Other diameters of bits are available for special applications that are
not shown in these charts. In general, they tend to cost more, but the big-
gest problem often is that there is a limited choice of types when it comes
to uncommon bit sizes. For instance, for one common size, we may have a
choice of 25 tooth and hardness characteristics, just from a single manu-
facturer, and maybe 50–100 choices if we include all manufacturers.
However, with some odd-size bit, we may be constrained to a limited
range of tooth and hardness choices and possibly only one manufacturer.
That may be acceptable for some special cases, so it always should be
considered.

Actual Bit Clearance

To determine the bit clearance, we look at the casing tables for the
internal diameter and make sure it is larger than the diameter of the bit.
In the tables we see two diameters listed. One is the internal diameter and
the other is the internal drift diameter, which is slightly smaller than the
internal diameter. The internal diameter is the diameter to which the tube
is supposedly manufactured. Once it has gone through the milling pro-
cess, it is inspected for final diameter by passing through it a mandrel of
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the diameter listed as the internal drift diameter. So, its internal diameter
might be the same as the specified internal diameter or it might be
slightly smaller (or larger), but we know that it is at least as large as the
drift diameter (assuming the manufacturer does its job). We normally
assume that the drift diameter is the maximum bit diameter we can be
assured will pass through the casing. But, in many cases, bits greater than
the drift diameter have been used. In that case, you must drift the casing
with a mandrel the size of the bit first and cull out those joints that are
undersized. Some steel mills actually do this for customers (usually for
extra cost).

3.2.9 Alternative Approaches
There are additional approaches to allow for more clearance for the
casing. One method is to underream the open hole below the current
casing string. This allows additional clearance and is a proven method
where the expense of the extra time and reaming can be justified. A sim-
ilar result can be obtained with a bicentered bit for drilling below the cur-
rent string of casing. Such a bit drills a hole larger than its nominal
diameter. This technique can eliminate the extra expense of underreaming
and accomplish the same result.

Another option is the use of expandable casing. This is a relatively
new technology and has proven successful in a number of applications.
The hole typically is drilled with a bicenter bit or is underreamed to give
more clearance. The casing itself is run just like a conventional liner and
is expanded after it is in place. There are obvious advantages to this
expandable casing technology; however, there are also some disadvan-
tages. Expandable casing is discussed in Chapter 10.

3.3 Closure
In this chapter, we examined the procedures for selecting casing setting
depths and casing sizes. We used a plot of formation pore pressures and
fracture pressures to select the setting depths. This straightforward method
may appear deceptively simple. The truth is that the procedure is not com-
plex but the data for use in the plot often is not readily available nor totally
reliable. When this type of procedure first came into use, many operators
looked at it as a way to save money by reducing the number of casing
strings traditionally run in some areas. It appeared that, in many cases, it
was possible to run surface casing a bit deeper and eliminate an interme-
diate casing string. When it worked, it did save costs; but when it did not
work it not only added an intermediate string that had been “eliminated”
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but often an additional string as well and resulted in a very small hole size
at bottom and significant additional costs. The problem in these situations
was that the data proved unreliable in some cases and the margins were too
close for operating personnel to adhere to in others. So, in all cases, the
data used in the depth selection process must be scrutinized with care. A
prudent philosophy might be stated like this:

• Exploratory wells or critical wells. Data are possibly scarce or 
unreliable, so allow for the unexpected with contingencies in 
casing size and depths. Usually, this means allowing for the 
possibility of running one more casing string than the plan calls 
for. These are not the wells where we try to save money on 
casing.

• Development wells. Data reliability and risks are well known. 
These are the wells where casing costs can be minimized and 
smaller margins can be used.

No matter what method you use to determine the casing setting depth,
always keep in mind that it is one of the most critical steps in assuring a
well’s success. Do not be caught in the trap of compromising the chances
of success by trying to save money by unnecessarily minimizing casing
depths and sizes.
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CHAPTER 4

Casing Load Determination

4.1 Introduction
In this chapter, we discuss the collapse and burst loading used for the
design of casing strings. To illustrate the process, we continue with the
example used in the previous chapter, where we determined the setting
depths and casing sizes. We use several types of loading for illustrational
purposes and again emphasize that operating companies have a variety of
views on the use of the various types of loading.

4.2 Casing Loads 
To determine what strength of casing we need, we must next consider the
types and magnitudes of the loads the casing must safely bear. A number
of different considerations and possibilities accompany each string of
casing run in a well. Some simple load situations suffice for most casing
strings, but often special conditions may apply to a specific well or type of
well. We look at the types of loads commonly used for design for each type
of casing string. Three basic types of loads commonly are encountered:

1. Collapse loads. These are differential pressure loads where the 
external pressure exceeds the internal pressure, tending to cause 
the casing to collapse.

2. Burst loads. These are differential pressure loads in which the 
internal pressure exceeds the external pressure, tending to cause 
the casing to rupture or burst.

3. Axial loads. These are tension or compression loads caused by 
gravitational and frictional forces on the pipe.
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The first two are dictated by well conditions and anticipated operations in
the well. Those are the two we cover in this chapter. The third type of
load, axial, is a function of the casing selection process itself and is dis-
cussed in the next chapter. The first two are functions of pore pressures,
fracture pressures, and drilling fluid (or cement) pressures.

Magnitude of Loading

The magnitudes of the loads that a particular casing string actually experi-
ences in service for the most part are unknown. Certainly, we can calcu-
late the loads we are likely to encounter if all operations are perfectly
successful, but the problem is that often there are imperfections in our
cementing results or problems in our drilling operations. We almost
always are able to determine loads if all is perfect, and we can almost
always determine the type of loading that would take place if things go
totally awry. But between those two situations is a great unknown. Hence,
our most logical approach is to assume the worst case that can happen,
within reason, and that is the one we typically use for our casing design.
We assume that we can reasonably predict the nature of the worst case
loading and calculate its values. For now, we do not concern ourselves
with the probability of such loading occurring.

The process then consists of determining the following:

• Collapse loading.

• Minimum internal pressures.

• Maximum external pressures.

• Burst loading.

• Maximum internal pressures.

• Minimum external pressures.

Some typical sources of these pressures are

• Formation fluids.

• Water (fresh or salty).

• Oil.

• Gas.

• Drilling fluids.

• Whole mud.

• Mud filtrate.
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• Unset cement.

• Whole cement.

• Cement filtrate.

• Stimulation fluids.

• Ocean or surface water.

• Atmosphere.

These are the pressure sources that contribute in various combinations to
the pressure loading of casing in wells.

4.3 Collapse Loading
In the case of collapse loading, our task is to determine the least amount
of pressure the casing will have inside and the maximum amount of pres-
sure the casing will have on the outside. For collapse loading, we typically
consider some static fluid gradient on the inside and outside of the casing
string. The internal loads are the loads that resist collapse. We would like
these loads to be high, but in the design process, we try to determine the
minimum internal load that might reasonably occur.

Internal Loads, Collapse

• Empty casing (atmospheric pressure).

• Gas.

• Oil.

• Freshwater.

• Field saltwater or stimulation fluids.

• Drilling or workover fluids.

• Combinations and partial columns of these.

In most wells, the most serious internal collapse loading is atmospheric
pressure (an empty well bore). It can happen in surface casing and even
intermediate casing, if severe lost circulation is encountered while drilling
below the casing. It can occur during underbalanced drilling operations,
where air or gas is the drilling fluid. It can even happen in some produc-
tion casing strings with gas lift or pumps or if the casing is “blown dry”
after a stimulation. (For the skeptic, this does happen and more often than
one might think.)
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At the surface, the external load usually is taken to be zero or atmo-
spheric pressure, except in the case of subsea completions, where the
external pressure is the seawater pressure at the subsea wellhead. Below
the wellhead lie a number of possibilities for external loads.

External Loads, Collapse

• Freshwater.

• Saltwater.

• Formation pressure.

• Drilling fluid.

• Cement (unset).

Generally, the worst case here might be the possibility of a poor cement
job and the external pressure is equal to the mud pressure in which the
casing is run (which is higher than the formation pressures of the forma-
tions covered by the casing). While the density of the cement usually is
higher than the mud, there is always the displacement fluid inside the
casing when the cement is placed. However, in some cases, the differen-
tial pressure between the cement outside and the displacement fluid on the
inside represents a more severe collapse situation than any other that may
be encountered in a particular well, so that should be considered. It is
important to note that we never consider that the hardened cement gives
us any protection from external loads. It might well do that, but we cannot
assume it will.

In many other wells, it is not possible that the casing would ever be
empty. In intermediate strings that were set because of abnormally high
pressures below, the likelihood of the casing being empty usually is
remote. However, in the presence of partially depleted zones and an
underground blowout, it could happen.

4.4 Burst Loading
In low pressure wells or wells that will not flow, burst is seldom consid-
ered. However, one should keep in mind the possibility of a future fracture
job or high rate stimulation that might be pumped down the production
casing. In burst loading, the external pressure is the resisting load, and the
external loading in a burst situation normally is taken to be the lowest pos-
sible pressure externally. At the surface of the string, that pressure is taken
to be zero or atmospheric pressure. In a subsea casing string, it would be
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the seawater pressure at the wellhead. The external pressures other than at
the surface could be from a number of sources.

External Loads, Burst

• Atmospheric pressure (at surface of string).

• Seawater pressure (at surface of string).

• Freshwater.

• Saltwater.

• Formation pressure.

• Drilling fluid.

It is never acceptable to assume that hardened cement will give us support
in burst, even though it will. The problem with cement is that we have to
design our string before the well is cemented. If our cement job is near
perfect, then we have additional support in those sections covered by
cement. However, if there is even a small interval where the cement is
poor, then we have no support at that interval, and there is nothing we can
reasonably do the change that. Hence, we can never safely assume that the
hardened cement gives us any benefit when we are in the design stage.

Internal Loads, Burst

• Gas.

• Oil.

• Water.

• Combinations of gas and liquids.

• Stimulation fluids in combination with pumping pressures.

In most wells where burst is considered, the internal loading is a gas pres-
sure, but that is not always the case. In many wells, the internal loading is
oil pressure or even water. It is relatively easy to design for burst if the
internal pressure is due to a liquid, but several complications arise when
the fluid is gas.

In cases where gas is present, additional factors usually are taken into
consideration. If drilling will take place below the casing shoe, then there
is a possibility that the gas pressure will exceed the fracture pressure at or
below the casing shoe. In such a case, there is no point in designing the
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casing string for full pressure of the gas all the way to the surface, if it is
not possible for that pressure to ever be reached, since the gas pressure
will not exceed the fracture pressure at the shoe. The same thing can be
said for oil and water. Typically, this condition is considered in designing
surface and intermediate strings only, since the condition does not arise in
production strings. There also is another approach where we consider a
combination of liquid and gas in the fluid column, fracture at the shoe,
and a limited working pressure on the blowout preventer (BOP). These
various loading conditions are demonstrated in the following sections,
which are specific to the type of string being designed.

4.5 Surface Casing
In this section, we examine the particular loads as they apply to surface
casing. Typically, the loads in surface casing are relatively low compared
to other casing strings in the well, but many casing failures occur because
of underdesigned surface casing.

4.5.1 Surface Casing Collapse Loads
The collapse load for surface casing depends on the worst-case scenario
anticipated, in which the pressure outside the casing exceeds the internal
pressure. There are a number of possibilities, but the most commonly
accepted situation assumes that the surface casing is empty inside (pos-
sibly due to lost circulation while drilling somewhere below) and has mud
pressure on the outside of the same magnitude as when the casing was
run. We can modify the internal pressure, if we have some knowledge of
the worst case of lost circulation that could be encountered and how far
the drilling fluid would drop in the surface casing should that occur. But,
in the absence of such knowledge, we should assume the lost circulation
situation could be severe enough to empty the surface casing. On the out-
side of the surface casing, we know the pressure when the casing is run; it
is the hydrostatic pressure of the mud column. If the cement is of greater
density than the mud (and it usually is) we easily can calculate the pres-
sure due to the cement. The question is, what is the pressure after the
cement hardens? We can be fairly certain that it will not be as high as the
cement pressure before it hardened, but the actual pressure depends on the
integrity of the cement job, that is, whether there are channels in the
cement or some formations are not cemented properly. Typically, a safe
assumption is that the highest pressure outside the casing after cementing
is the mud pressure before cementing. It may be less, but it is unlikely to
be greater.
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Typical Surface Casing Collapse Design Load

• Internal pressure—atmospheric pressure or zero.

• External pressure—mud pressure when run.

That is the collapse design load we use here, but be aware that there are
other possibilities.

4.5.2 Surface Casing Burst Loads
The burst load of the surface casing is based on the maximum anticipated
internal pressure and the minimum anticipated external pressure. Let us
look at the external pressure first. In collapse, we looked for the maximum
external pressure, now we are interested in the minimum. The minimum
external pressure is likely to occur some time after cementing. It is believed
that, when cement hardens, fluid in the spaces where the cement has chan-
neled or is absent often is similar in density to freshwater. For that reason,
many assume that the minimum external pressure is equivalent to a fresh-
water gradient. Some believe that a freshwater gradient is not really likely
and they use the mud pressure on the outside, just as we did in collapse.
That is also a valid external load but not the most critical that could occur.

The internal pressure for burst is a little more complicated. If we drill a
well some distance below the surface casing, encounter a gas kick, and get a
large volume of gas in the casing, then the pressures could get quite high.
However, if the pressures get very high, the formations at the bottom of the
surface casing will fracture and flow will go into those formations. That
being the case, it does not make sense to design a surface casing string to
withstand say 6000 lbf/in.2 internal pressure if the formation below the sur-
face casing fractures at 3500 lbf/in.2. The typical procedure for determining
burst load is to assume that the maximum internal pressure is equivalent to
the fracture pressure beneath the casing shoe and gas from there to the sur-
face. In cases where gas is known to not be present, we could use oil or water
as the internal fluid; however, gas gives us the most critical load and should
always be used unless there is absolute certainty that no gas is present in the
zones between the surface casing and the next string of casing.

Typical Surface Casing Burst Design Loads

• Internal pressure—equivalent of gas kick that fractures and flows 
into formation(s) below the casing shoe.

• External pressure—freshwater gradient.
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Again, we must emphasize there many possibilities and different compa-
nies have a variety of approaches. These, however, are simple and should
be safe in most cases.

4.5.3 Surface Casing Load Curves
One of the easiest ways to work with casing loads is to construct a set of
design load curves. The anticipated loads, such as collapse pressures and
bust pressures, are plotted graphically as pressure versus depth. This
makes it very easy to visualize the loading, rather than relying on a lot of
formulas. (We still need formulas and calculations to construct the load
curves, but they require very few calculations.)

Example 4–1 Surface Casing Example

Possibly the best way to understand the construction of the load curves is
with an example. We use the depth selection curve used in Chapter 3.
Assume that the bottom-hole temperature is 326° F, the average surface
temperature is 74° F, and that the temperature gradient is linear from the
bottom to the top. The curve is shown in Figure 4–1.

Figure 4–1 Depth selection chart for example well.
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In this example, we are going to set surface casing at 3000 ft, the mud
specific gravity is 1.10, and the fracture gradient is equivalent to 1.45 sg.

Collapse Load

First, we plot a collapse curve. Assume the internal casing pressure is
0 lbf/in.2 and the external pressure at 3000 ft is due to the mud pressure.
The collapse load at 3000 ft is

(4.1)

Note that we are going to round off to the nearest 10 lbf/in.2 to keep these
calculations simple—after all, we are not doing rocket science here.
Refreshing your memory from Chapter 2, γ  is the specific weight of the
mud and h is the depth. We are not going to show examples in SI units
again, but just to be sure you are clear on the calculation, in SI units, it
would be written as

(4.2)

If you are not perfectly clear on this, then you probably did not read
Chapter 2, Section 2.4. Go back and read it now, otherwise you will be
lost from here on. 

The collapse load at the surface is zero, since there is no external
pressure nor any internal pressure. 

(4.3)

We plot this collapse load curve in Figure 4–2.

Burst Load

Next, we examine the burst load. At the shoe, the burst load is the fracture
pressure of the formation below the casing less the external pressure at the
casing shoe, which we said is equivalent to a freshwater gradient. Some
companies add some amount of additional pressure to account for extra
frictional pressure for flow into the formation—most do not. We do not do
that here. Next, we calculate the burst load at the shoe at 3000 ft, which is
the fracture gradient at the shoe:

Δp hshoe mud
2lbf/in= − = ( )( )( ) − ≈γ 0 0 052 1 11 8 33 3000 0 1440. . .

Δp hshoe mud kPa= − = ( )( )( ) − ≈γ 0 9 81 1 11 998 914 0 9930. .

Δpsurf
2lbf/in= 0
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(4.4)

You can see that the burst load at the shoe is quite low, and that is usually
the case with most casing strings. An exception to that might occur at
some known depleted formation near the shoe.

Next, we need to calculate the burst load at the surface. The worst-
case scenario here is to have the surface casing full of gas, all the way
from the shoe to the top, this gives us the maximum pressure at the sur-
face, and such pressure is quite possible in a kick situation. We use equa-
tion (2.45) (from Chapter 2) to calculate the gas pressures, assuming pure
methane.

Calculate the pressure at the shoe at 3000 ft, which is the fracture
pressure of the formation:

(4.5)

Figure 4–2 Surface casing collapse load for the example well.
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Assuming the temperature gradient is linear, we can calculate the tempera-
ture at 3000 ft, knowing that it is 74° F at the surface and 326° F at 14,000 ft:

(4.6)

The average temperature is

(4.7)

Then the surface gas pressure is

(4.8)

Since there is no external pressure at the surface, then that value is also
the burst load at the surface. We now plot the surface casing burst load in
Figure 4–3. That completes the load curves for the surface casing
example.

4.6 Intermediate Casing
The intermediate casing loading often is straightforward, like the surface
casing, except that the magnitude of the loads generally is greater. For
many designs the procedure is exactly the same as our surface casing
example.

4.6.1 Intermediate Casing Collapse Loads
Collapse loading in intermediate casing is not often critical, but it can be.
Many companies use a mud gradient outside the intermediate casing and
no pressure on the inside. This almost always is the case if the interme-
diate casing later will become part of the production string after a produc-
tion liner is set. If the intermediate casing later will be covered by the
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production casing or a tieback string, then the issue of collapse load may
change. Since there is very little likelihood that the intermediate string
will ever be empty, some other internal load often is chosen. Typically,
freshwater is selected. This is a likely scenario in case of an underground
blowout below the casing shoe, where the mud level falls and the casing
must be kept full of liquid to prevent gas from reaching the surface. In
those cases, it is not uncommon that the casing might be filled with fresh-
water when there is not enough weighted drilling fluid for the purpose.
However, in some cases, intermediate casing is set to allow the drilling of
low-pressure formations below the casing. In those cases, it is possible
that the casing could be empty or nearly so. 

4.6.2 Intermediate Casing Burst Loads
The typical burst load on intermediate casing usually is assumed to be one
similar to the surface casing. That is a case of a freshwater gradient or a
drilling mud gradient on the outside, using the mud density at the time the
casing was cemented, and gas pressure on the inside with the pressure at
bottom equal to the fracture pressure at the shoe. An alternate approach
sometimes is used when the surface BOP and wellhead selection limits
the burst rating at the surface. In those cases, the reason the BOP does not
withstand full well pressure is that the formations below the shoe fracture

Figure 4–3 Surface casing burst load for the example well.
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before the maximum pressure is reached at the surface, so it is common
practice in many areas to use a BOP stack that contains the kick pressure
to the extent that the formation below the shoe fractures before the BOP
fails. This often is a cost-saving measure, but in other cases, it is an issue
of availability. We do not argue the merits of such a choice here, other
than to say that it is not an uncommon practice. If that type of well plan is
chosen, then the surface pressure is fixed at the maximum service pres-
sure rating (MSP) of the BOP and wellhead, and the pressure at the
bottom of the intermediate casing is fixed at the formation fracture pres-
sure. (In some cases, where high rates of gas flow might be anticipated, it
is common practice to add some incremental amount of pressure to the
fracture pressure to account for the high injection rate into the formation.)
Given those two pressures, one must determine the configuration of the
mud and gas column that would impose the highest burst loads on the
casing. It seems intuitive that the highest load on the casing occurs with
gas at the surface and mud below, but that is not the case. Prentice (1970)
showed that the maximum burst load actually occurs with a mud column
on top and gas beneath. We illustrate the use of this procedure in our
example well in Figure 4–4.

Figure 4–4 Maximum burst load method (after Prentice, 1970).
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Example 4–2 Intermediate Casing Example

Continuing with our example from the previous chapter (and here), we
now determine the collapse and load curves for the 9⅝ in. intermediate
casing to be set at 10,500 ft. At 10,500 ft, the pore pressure is equivalent
to a mud column with a specific gravity of 1.36, and the fracture pressure
is equivalent to a 1.88 sg mud. The mud density when the casing is set is
1.42 sg. The bore-hole temperature at the shoe is 263° F and the surface
temperature is 74° F. 

Collapse Load

The load curve for collapse is similar to a surface casing load curve. How-
ever, there is very little chance the intermediate casing could ever be
empty of all fluids like the surface casing, and if we design an interme-
diate string for collapse with no fluid inside, then we likely will have a
greatly overdesigned and expensive string of casing, whose function in
the well is only temporary. We consider that the worst possible case for
collapse of our example intermediate casing is one in which there is fresh-
water on the inside and the mud it was run in on the outside. Note that
some companies would not find this assumption acceptable and would
apply a more severe collapse load criterion. That always depends on the
specific well, and the design generally should be for the worst case even if
it means a very expensive string of casing.

For our case, then, the net collapse load at the bottom is

(4.9)

This is a very low value for collapse, and it will probably not even affect
the design. The collapse load at the surface is zero, see Figure 4–5.

Burst Load for Gas

As for the burst load, there are many possibilities, as already mentioned.
The most common method is exactly like we did with the surface casing.
We illustrate that method first, then show two other approaches. The gas
loading example is as follows:

Δp hshoe mud wtr   lb= −( ) = −( )( )( ) ≈γ γ 0 052 1 42 1 00 8 33 10500 1910. . . . ff/in2
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• Internal pressures.

• Fracture pressure at the shoe.

• Gas inside with gas pressure at the surface.

• External pressures.

• Freshwater gradient behind the casing.

Then the net burst pressure at the bottom is

(4.10)

The net bust pressure at the surface is due to a column of gas whose pres-
sure at the casing shoe is equal to the fracture pressure at the shoe. We
calculate the fracture pressure first:

(4.11)

Figure 4–5 Intermediate casing collapse load for the example well.
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Next, we calculate the gas pressure at the surface:

(4.12)

(4.13)

This gas pressure is the burst load at the surface, since there is no pressure
outside the wellhead. This load curve is plotted in Figure 4–6.

Maximum Burst Load Method

We will now examine the method of Charlie Prentice (1970). This method
of burst design assumes that the minimum rating of the wellhead equip-
ment is one limiting factor and the injection pressure of gas or liquids into
the formation just below the casing shoe is the other. Between the surface
and the casing shoe is some combination of gas and mud. As previously
mentioned, it would seem that the worst case would be gas at the surface
and mud from some point in the casing down to the shoe, such that the
surface pressure of the gas is equal to the working pressure of the BOP,
and the combined column is such that the pressure at the shoe is equal to
the injection pressure of the formation at the shoe (or just below). But, as
stated earlier, Prentice showed that the worst case is exactly the opposite,
with the mud on top and the gas below.

We assume for this example that the maximum service pressure of our
BOP is 5000 lbf/in.2. Clearly, if we allow the gas to get all the way to the
surface, the pressure will exceed that of the BOP working pressure by
almost 2200 lbf/in.2. For a real well, we should seriously question such a
choice, but for this example, we assume it is not our choice to make: fur-
thermore, we want to illustrate how the method works. We design a string
for that limitation. 

By knowing the working pressure of the BOP, the fracture pressure of
the formation below the shoe, and the density of the mud, we can calcu-
late the length of the column of mud and gas from the following equations
of Prentice (1970):

Tavg
o  R= + + =74 263

2
460 628 5.

p esurf
2  lbf/in= ≈
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(4.14)

where

Figure 4–6 Intermediate casing burst load for the example well with a full gas 
column.
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Please note that these equations are not unit specific and will work with
either SI or oil-field units, as we previously defined specific weights in
Chapter 2. Also, I made a variation in nomenclature here from Prentice’s
paper, the use of the symbol h for the vertical length (or vertical displace-
ment), so that these formulas are valid for either vertical or directional wells.
This is a system of linear equations we might set up and solve as follows:

(4.15)

Solving this simple system we get equations for the vertical lengths of the
mud column and the gas column:

(4.16)

We need not calculate both. If we calculate the vertical length of the mud
column, we can subtract it from the vertical length of the casing to get the
vertical length of the gas column. The difficulty with this sort of formula
is the specific weight of the gas. A gas gradient is not constant; it varies
with depth and temperature. Typically, in casing design, an average value
is used. We use an average value of a pressure at the shoe equal to the
fracture pressure and a pressure at the surface equal to a full column of
gas. This is not precise, but then neither is casing design. At least, it gives
us a reasonable approximation. Actually, we already did these calcula-
tions. The fracture pressure was calculated in equation (4.11), and the gas
pressure at the surface was calculated in equation (4.13). We take the dif-
ference between those two pressures and divide by the depth of the casing
to give the average specific weight of the gas:

(4.17)
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This is the average specific weight of the gas. (Note that, if you are using
SI units, the pressures are in Pa, the depth in m, and the result is in Pa/m,
so as long as we are working with specific weights, no conversion factors
are needed.)

Now, a question arises. What is the density of the mud when the kick
occurs? Is it the mud density at the time the casing was set or at some
future time while we are drilling below the shoe? The difficulty here is that
we do not know what the mud density will be when the well kicks. We
could choose either the maximum weight we expect to use in drilling to
total depth or the minimum, which is the density used when the shoe is
drilled. But which one actually gives us the worst loading case? As it turns
out, the worst case occurs with the highest mud density. The higher the
mud density, the closer the gas can get to the surface without exceeding the
pressure limitations of the surface equipment. So, we calculate the values
using the maximum mud density for the well, which is 1.82 sg: 

(4.18)

(4.19)

(4.20)

(4.21)

We can see that using a mud with a specific gravity of 1.82 gives us a net
burst pressure of 6180 lbf/in.2 at a vertical depth of 3320 ft. Had we used a
lower mud density, the net burst pressure would have been less and at
greater depth. In fact, if we used the same gas density, it would plot on the

γmud 2

lbf
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= ( )( ) =
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0 052 1 82 8 33 0 788. . . .
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same line between the maximum net burst we calculated previously and
the net burst pressure at the shoe, see Figure 4–7. 

Burst Load for Oil

Many engineers work in areas where there is essentially no gas, only oil.
And, no doubt, they are weary of seeing all examples of intermediate
casing design based on gas—in fact, some have told me so. We almost
never see examples of intermediate casing designed for oil, although that
type of loading often occurs in many parts of the world. Here is an example
of the same well using oil as an internal loading as opposed to gas.

Assume an oil gradient instead of gas and assume that the oil in our
well is 35 API gravity at 60° F. Since the density of oil is temperature depen-
dent, we make a temperature correction first, using an average temperature:

(4.22)

Using API tables, we find that the API gravity at 168.5° F is approximately
43. Then, using the API formula relating specific gravity and API gravity, 

(4.23)

Please note that this is an approximation; oil also is compressible. This
should be close enough for most casing design, but there are more accurate
methods for calculating pressures from compressible oil at varying temper-
atures. Now, assuming a pure column of oil inside the casing and a fracture
pressure of 8550 lbf/in2 at the shoe, we calculate the surface pressure:

(4.24)

If we were using a 5000 lbf/in.2 maximum service pressure BOP on this
well, it would be adequate. This is the net burst load at the surface, and the
net burst load at the shoe is exactly as previously calculated. The burst
load at the shoe is the same as before, and the burst load curve would look
like that in Figure 4–8.
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Figure 4–7 Intermediate casing burst load for example well using maximum 
load method of Prentice (1970).

Figure 4–8 Intermediate casing burst load for example well with 35 API 
gravity oil instead of gas.
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4.7 Production Casing
As one might imagine, there are a number of different ways to consider
the loads in the production casing. One purpose of the production casing
is as a backup string for the production tubing, so that it can support the
same loads as a tubing string. However, there are some major differences
in the maximum loads that a production string might encounter as com-
pared to a tubing string. In some cases, the collapse load might be higher,
and in other cases, the burst load might be significantly higher. 

4.7.1 Production Casing Collapse Loads
The most common approach to collapse loading in a production string is to
assume that the worst collapse scenario is one in which the casing is empty and
open to the atmosphere. This is not common, but it does happen. Another pos-
sibility is to assume that the well always has some amount of liquid or pressure
inside it, equal to the formation pressure at the time (usually taken to be the
depletion pressure). The situation for each well may be different and can be
complex. One should always keep in mind that what may actually occur in the
future may be difficult to foresee. Casing often collapses during the producing
life of some wells, because later in the life of the well someone attempted some
operation that was not foreseen when the casing string was designed.

4.7.2 Production Casing Burst Loads
As far as burst is concerned, the most common procedure is to assume that
the casing must withstand the maximum shutin formation pressure in the
form of a gas column for a gas well (or oil for an oil well) from the perfo-
rations all the way to the surface. In other words, the production casing is a
backup for the tubing as far as burst pressure is concerned. And, there are
many ways in which a situation such as that can occur. However, one other
situation can be much worse, especially with a gas well. Suppose the
tubing is set in a packer and a leak develops in the tubing near the surface.
There is no problem with casing burst at the surface, because it was
designed for that pressure. But, what happens downhole because of the gas
pressure on top of the packer fluid? The burst load is much higher in a situ-
ation like this than with a pure gas column in the casing. Designing for a
case like this can lead to a very expensive casing string. Although this par-
ticular scenario is often ignored in production casing design, it is not at all
an uncommon situation in the producing life of many gas wells. A lot of
wells in the world have pressure relief valves on the tubing or casing
annulus because of this very situation; the alternative is a downhole rupture
of the production casing and an underground blowout.
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Example 4–3 Production Casing Example

Looking again at our example, we see that the production casing is set
from the surface to 14,000 ft. We assume a gas well. The bottom-hole
pressure is equivalent to a 1.76 sg mud. We need not be concerned with
the fracture pressures in the production casing loading. The collapse
loading we consider is that the casing could be empty and the pressure on
the outside is equivalent to the mud it was run in, 1.82 sg. 

Collapse Load

The collapse loading is

• Empty on the inside.

• Mud on the outside, 1.82 sg.

For collapse, the net load at the surface is 0, and at 14,000 ft, the net col-
lapse pressure at the bottom of the production casing is due to the 1.82 sg
mud on the outside:

(4.25)

The collapse load is shown in Figure 4–9.

Burst Load

For burst, we again assume that the pressure on the outside is equivalent
to freshwater (although many use the mud weight it was run in), and on
the inside, we consider that the packer might fail during production, so
that the packer fluid is produced with the gas, resulting in a full column of
gas in the annulus between the tubing and production casing. 

The formation pressure is equivalent to 1.76 sg, and from that, we cal-
culate the pressure at the bottom of the casing:

(4.26)
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Then, the gas pressure at the surface is calculated using methane:

(4.27)

(4.28)

The net burst loads are then calculated.

(4.29)

Figure 4–9 Production casing collapse load for the example well.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000 14000

Collapse Load (psi)

M
ea

su
re

d 
D

ep
th

 (f
t)

Collapse Load
Line

Tavg
o R= + + =74 326

2
460 660

p esurf
2 lbf/in= =

−( )
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥10670 8560

16 0 14000

1544 660

Δ

Δ

p

p

surf
2

shoe

 lbf/in= − =

= − ( )( ) ≈

8560 0 8560

10670 0 052 8 33 14000. . 44610 lbf/in2



4.7  Production Casing 127

Now, we are ready to plot the load curves for the production casing, see
Figure 4–10.

In this simplified approach, we calculated a net burst pressure at the
shoe and at the surface. We connected them with a straight line. Implicit in
this is the assumption that both the liquid outside the casing and the gas or
liquid inside the casing have constant densities from the shoe to the surface.
For the most part, that is reasonable for the liquids, but we know that the gas
density varies with depth, since it is temperature and pressure dependent.
For the purposes of basic casing design, this nonlinearity of the gas density
usually is ignored. That is our choice here also. However, for critical wells,
it may be considered better to calculate the gas pressure at several points in
the casing to account for the nonlinearity of the gas density.

Before we leave the production casing, we should look at the possible
burst load that would occur if a tubing leak developed near the surface.
We already calculated the gas pressure at the surface, which still consti-
tutes the net burst load at the surface. Now, we add that pressure to the
hydrostatic pressure of the 1.82 sg packer fluid less the hydrostatic pres-
sure of freshwater (or some other fluid) outside the casing to get the net
burst load at the bottom of the production casing:

(4.30)

We can see that this almost triples the burst load at the bottom of the
casing. This might require a very expensive casing string, but the reality is
that it is not uncommon to develop a tubing leak at or near the surface.
Near-surface tubing corrosion from freshwater condensation mixed with
CO2 to form carbonic acid is quite common in many gas wells. Could we
expect to rely on the cement to resist such a burst load? Some operators
do, but it is not a good idea. This is a point where we really have to seri-
ously question the use of a freshwater gradient outside the pipe. For a pro-
duction string, as in our example, for an overpressured interval at 14,000
ft and below the intermediate casing, it is a stretch of the imagination to
visualize a freshwater gradient outside the production casing. In this case,
it is much more reasonable to assume something closer to formation pres-
sures rather than a freshwater gradient. Let us look at a gradient equiva-
lent to the formation pressure, 1.76 sg, behind the casing, which is slightly
less than the mud the casing was run in: 

(4.31)

Δpshoe
2 lbf/in= + −( )( )( ) ≈8560 0 052 1 82 1 00 8 33 14000 13530. . . .

Δpshoe
2 lbf/in= + −( )( )( ) ≈8560 0 052 1 82 1 76 8 33 14000 8920. . . .
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While this value is still quite high, it is about the minimum burst load we
can reasonably expect if our well develops a tubing leak at or near the sur-
face in the early life of the well, before the zone depletes (see
Figure 4–11). Another fact that should be mentioned is that we used
methane in our gas calculations, which is a worst-case scenario. In an
actual design for the production casing, it would be much more useful to
use the actual gas that will be produced rather than methane. That would
result in lower surface pressures than what we calculated. For our
example well, we use the loads we calculated here, but the point is that,
when designing a production casing string for a gas well, we should con-
sider the best data we have rather than rely on the simplifications we use
for designing other strings in the well.

4.8 Liners and Tieback Strings
Liners and tieback strings are special situations; however, the approach is
very similar to that of either the intermediate or production casing. The
thing that is different in the load curve for a liner or a tieback is that the
load curve is not just for the liner or tieback but for the casing in which it
hangs if it is a liner or the liner and tieback combination. Sometimes,
liners must meet the requirements of two functions (see Figure 4–12). In
other words, a liner or a tieback is never designed by itself but as a contig-
uous part of another string of casing. The only thing that really differs as

Figure 4–10 Production casing burst load for the example well.
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far as the load is concerned is the tension load, since it is a separate part of
a longer string.

In the figure, we see a well with a production liner and two possibili-
ties for final completion. On the left, the well could be completed as is,
with the production liner and the intermediate casing forming the final

Figure 4–11 Production casing burst load based on a tubing leak near the 
surface.

Figure 4–12 A well with a production liner and two completion options.
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production string. In this case, the intermediate string is designed to func-
tion as both the intermediate string and the upper portion of the produc-
tion string. In the second case, where a tieback is run, the intermediate
casing serves only as an intermediate string and the liner and the tieback
together serve as the production casing. Figure 4–13 shows another
common liner situation.

In this case there are two liners, a drilling liner and a production liner.
On the left, the intermediate casing serves its normal purpose, but it also
serves as a portion of a second intermediate string in conjunction with the
liner, so both have to be designed as one string and the string has to satisfy
both functions. On the right, the drilling liner is tied back to the surface
and a production liner run below it. In a case like this, the design depends
on when the tieback is run. If the tieback is run immediately after running
the drilling liner, the intermediate casing serves as intermediate only until
the tieback is run, then the drilling liner and tieback serve as a second
intermediate string, and finally, in conjunction with the production liner,
they serve as a production string. If the tieback is run after the production
liner is run, then the intermediate casing has to be designed to perform its
first function as well as a second intermediate string with the drilling liner.
Finally, like before, the tieback, the drilling liner, and the production liner
all function as the final production string. It may sound more complex
than it actually is, but the only thing to keep straight is to be sure all
strings are designed to meet all the required loads to which they will be
subjected in their various roles during drilling and production.

4.9 Closure
It should be pointed out with emphasis that the loads used in this chapter are
more or less typical, but still they represent a number of simplifying
assumptions. One always should evaluate the possibilities in each individual
well rather than rely on common practice. More and more often, new wells
are drilled in fields with depleted reservoirs present. This may change sig-
nificantly the load curves for a particular well, and one should always be
wary of using common “recipes” for the loads in these types of wells.

Our example load curves for collapse and burst are complete. We
have not mentioned load curves for axial tension yet. That is because the
well itself does not impose the axial load (discounting bore-hole friction
and curvature for now). The axial load is not determined until we make
our preliminary selection of pipe for the well, because it is a function of
the weight of the specific pipe and the density of the drilling fluid. We
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address the axial load in the next chapter, where we use these curves to
arrive at basic casing designs for all three of our example casing strings.

4.10 Reference
Prentice, Charles M. (1970). Maximum Load Casing Design. SPE 2560. 
Richardson, TX: Society of Petroleum Engineers.

Figure 4–13 The example well with a drilling liner and a production liner.
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CHAPTER 5

Design Loads and Casing Selection

5.1 Introduction
In the previous two chapters, we covered the first three steps of basic
casing design:

1. Selection of casing depths.

2. Selection of casing sizes.

3. Development of load curves for collapse and burst.

In this chapter, we continue the process to make our initial casing design
then refine it to account for combined loads:

• Development of design loads for collapse and burst.

• Initial casing selection for collapse and burst.

• Development of axial load curves.

• Development of axial design curves.

• Selection of casing for axial loads.

• Refinement of basic design selection for combined loads.

Casing selection is primarily a two-step procedure when done manually.
Just like writers make a first draft then revise it to make it better, we make
a preliminary casing selection based on published strength properties of
the tube then refine it, if necessary, to account for the effects of combined
loads. It is very easy to use the published values to get a preliminary
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design; and when used with appropriate design factors, many of these
preliminary designs become a final design with no need for further refine-
ment. However, the currently published values for collapse, burst, and ten-
sion are based on tests and formulas that assume no other loads are on the
casing. In other words, the collapse rating you see in the tables is the col-
lapse rating with no tension in the tube; the collapse rating is lower if the
tube is in tension. We begin with the initial selection process then discuss
ways to refine it for combined loading. 

5.2 Design Factors
Everything we do not know about a problem we lump into something
called a design factor. That may seem a bit flippant in tone, but essentially
that is the process. So, design factors represent the unknown. That does
not necessarily mean we are covering up our ignorance, but rather
employing a means of accounting for things we cannot reasonably mea-
sure. Essentially, we use design factors to account for uncertainties in the
properties of materials, uncertainties in the dimensional tolerances of
casing, and uncertainties in the casing loads. In the absence of exact data,
that is the common approach used in structural engineering for centuries.
We used to call these factors safety factors, but with the ever-growing
malignancy of litigation that term has fallen out of fashion because of the
connotation of the word, safety. Now, the fashionable term is design
factor, and that is the term we use. 

The issue of the magnitudes of casing design factors is a difficult one.
There was a time when some industry recommended standards appeared
in various publications. Most companies seemed to generally accept those
values, even though almost everyone deviated from them on occasion.
Now almost no two companies use exactly the same design factors.
Table 5–1 presents a range of the commonly used design factors.

We reiterate, these are not industry standards nor are they necessarily
recommended. They are merely some industry values that have been used
for over 50 years and in hundreds of thousands of applications. Most com-

Table 5–1 Common Casing Design Factors

Collapse Burst Tension

1.0–1.125 1.0–1.25 1.6–2.0
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panies likely have their own design factors, and usually the design factors
vary depending on the type of well and possibly its proximity to popu-
lated areas. Also, it is not necessary, nor always advisable, to use the same
design factors for each string of casing in a well.

In Alberta, Canada, where many wells have high H2S or CO2 concen-
trations in the produced fluids, specific minimum design factors are
required by regulation. While these may be subject to change, they are
listed in Table 5–2 for added information. There are provisions for using
reduced design factors in Alberta under some circumstances, where the
casing to be used has met certain test requirements.

5.3 Design Curves for Collapse and Burst
To make a preliminary selection of specific casing for a casing string, it
is first necessary to apply design factors to the collapse and burst load
curves. The result is called a design curve. The best way to illustrate the
process is to continue with the examples for the surface, intermediate,
and production strings we began in previous chapters. The selection of
design factors for these examples are arbitrary, with the primary intent
being that of illustrating different possibilities. In practice, one would
weigh the choice of design factors in light of company standards, experi-
ence in an area, perceived risk, and so forth. Those are decisions we
cannot teach here.

Table 5–2 Minimum Design Factors for Alberta (EUB Dir. 010, 2004 draft)

H2S pp H2S pp CO2 pp

<0.34 kPa ≥0.34 kPa >500kPa >2000kPa

Collapse 1.0a

a Casing evacuated internally.

1.0a 1.0a 1.0a

Burst 1.0 1.25 1.35 1.35

Tension 1.6b

b No allowance for buoyancy.

1.6b 1.6b 1.6b
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Example 5–1 Surface Casing Example

From previous chapters, we determined that the surface casing string for
our well would be 13⅜ in. casing set at 3000 ft. For this example, we
select the following design factors:

Collapse = 1.125

Burst = 1.125

We then apply these design factors to the load curves developed in the
previous chapter. Since the collapse and burst curves for the surface
casing are linear, we merely multiply the design factors by the upper and
lower values of each curve and plot those on the load curve (or we could
plot them on a separate graph to avoid any possible confusion). In the sur-
face casing collapse load, the value at 3000 ft is 1440 lbf/in.2, which we
multiply by the design factor of 1.125 to give 1620 lbf/in.2. That is the
design load at the surface casing shoe at 3000 ft. At the surface, the col-
lapse load is 0 lbf/in.2 so our design load is also zero at that point. We plot
those points on our graph, connect them with a line, and that becomes our
design curve, Figure 5–1. 

Figure 5–1 Design load for the surface casing collapse example.
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Next, we do essentially the same thing for the burst load. The design
factor we chose for burst also is 1.125, and we multiply that by the burst
load at the top and bottom and plot that line.

We plot these two values on the burst load curve to give us our design
curve for burst, Figure 5–2. 

That is a pretty straightforward procedure and takes only a few minutes
to do. The only point of difficulty in the procedure is deciding on the magni-
tude of the design factors to use. The preliminary design process for col-
lapse and burst of the surface casing is complete. The only steps that remain
are to select the casing that meets or exceeds the design requirements in col-
lapse and burst. We do that later; for now we construct the design curves for
collapse and burst of the intermediate and production strings.

Figure 5–2 Design load for the surface casing burst example.
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Example 5–2 Intermediate Casing Example

For the 9⅝-in. intermediate casing string to be set at 10,500 ft, we use the
collapse load curve and the maximum load curve for burst developed in the
previous chapter. The design factors we use for the intermediate string are:

Collapse = 1.125

Burst = 1.2

We used the same design factor for collapse as we did for the surface
casing, but we used a higher design factor for burst. Typical reasons for
this might be that we have the possibility of a gas kick in this string and
we might also have a reduction in wall thickness due to wear while we are
drilling to total depth after the string is in place. For the collapse design,
we have to determine the design load only at the shoe as the design load at
the surface is zero:

We plot this on the same chart as the collapse load curve to give us our
collapse design curve, Figure 5–3.

The burst load curve we generated using the maximum load method
of Prentice (1970) in the previous chapter has three points at which we
must apply the design factor—the surface, the point of the interface
between the mud column above and the gas column below, and the shoe:

We plot these points on the load curve (Figure 5–4), and we now have the
design curve for the intermediate casing in burst.

Δpshoe
2 lbf/in= ( ) ≈1 125 1910 2150.

Δ

Δ

Δ

p

p

surf
2

2

 lbf/in

 lbf/in

= ( ) =

= ( ) ≈

1 2 5000 6000

1 2 6180 7420

.

.int

ppshoe
2 lbf/in= ( ) =1 2 4000 4800.



5.3  Design Curves for Collapse and Burst 139

Figure 5–3 Design load for the intermediate casing collapse example.

Figure 5–4 Design load for the intermediate casing burst example.
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Example 5–3 Production Casing Example

Finally, we come to the production casing, which is the last casing string
in our example. We expect that it should be capable of containing full well
pressure throughout the producing life of the well. It should not collapse
if the well becomes depleted significantly or during any operations con-
ducted in the well bore during work overs or stimulations. For the 7 in.
production casing at 14,000 ft, we use the following design factors:

Collapse = 1.125

Burst = 1.2

We apply the collapse design factor to our collapse load to get the col-
lapse design and plot the results on our load curve, Figure 5–5.

Figure 5–5 Design load for the production casing collapse example.

Δpshoe
2 lbf/in= ( ) ≈1 125 11040 12420.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000 14000

Collapse Load (psi)

M
ea

su
re

d 
D

ep
th

 (f
t)

Collapse Load
Line

Collapse Design
Line



5.3  Design Curves for Collapse and Burst 141

Then the burst design, plotted in Figure 5–6:

Note that we did not use the burst load curve we generated assuming a
near surface tubing leak. In practice, we might have chosen that load
curve, even though it is not common practice in most designs. We did not
choose it here, because some points in this example would not be illus-
trated had we chosen that option, and the purpose of this example is to
illustrate as many points as possible. Now that we generated the design
curves for collapse and burst it is time to begin selecting specific casing
for the example well. 

Figure 5–6 Design load for production casing burst example.
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5.4 Preliminary Casing Selection Process
We are now ready to select the casing that will meet our design require-
ments in collapse and burst. We constructed design curves that show the
specific collapse and burst requirements, but many choices of casing meet
those requirements. So what are some of the things we need to consider at
this point?

We have so many variables and choices that we could spend a great deal
of time discussing all the possibilities. The most prevalent consideration is
cost, or perhaps we should say minimum cost. Minimum cost, however, can
be misleading, because that does not necessarily translate to the market
price of the casing. Minimum cost also includes logistics, transportation,
availability, current inventory, rig costs, and so forth. Many considerations
go into the selection process. In the examples used here, we stay with some
rather simple choices, but there are additional considerations.

5.4.1 Selection Considerations

Weight and Grade

In selecting the casing for our string, we often are presented with a choice
of a particular weight and grade of pipe versus a different weight or grade,
both of which might satisfy our design. For example, we might have a
choice between 7 in. 23 lb/ft N-80 or 7 in. 26 lb/ft K-55, either of which
would work in our string. The most obvious selection criterion might be
cost or availability, as previously mentioned, but what else might enter into
the decision? A thicker wall pipe might offer better corrosion or wear life;
hence, we might choose the thicker wall 26 lb/ft K-55. But, if it is a direc-
tional well where the pipe is below the critical inclination angle (the angle
below which nothing will move due to its own weight, 70° ±), then the
heavier it is, the greater the force required to push it in the hole, so in that
case the 23 lb/ft N-80 might be a better choice. Also the preferred or avail-
able bit size or completion equipment dimensions can enter into the selec-
tion process, so that one might favor a specific limit on the internal diameter
reduction of a thicker wall pipe. The choice of grade of pipe also is signifi-
cantly affected by the presence of corrosive fluids or hydrogen sulfide. 

Connections

In the process of selecting casing to meet our load requirements, we are
confronted with many different types of connections. What type do we
need? For most normal pressure applications, we can use standard API
ST&C or LT&C couplings; but for higher pressures and temperatures,
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bending in curved well bores, rotating torque, high-tensile loads, gas con-
tainment, and so forth, integral and proprietary connections may be neces-
sary. In those cases, one must refer to the proprietary manufacturer’s
specifications and recommendations. We can comment on a couple of
things though. If there is considerable bore-hole friction or problems with
unconsolidated formations, then one should consider the use of beveled
couplings or integral joint connections to reduce sliding friction. These
can significantly reduce frictional drag on the casing. Another consider-
ation is clearance problems, both in the open-hole section and inside of
existing casing strings. In some cases, flush joint casing might be the
choice because of clearance problems, and in other cases, special clear-
ance couplings might be the choice. There are just too many variables to
write out a decision chart for all the different possibilities.

Design Strengths

In selecting casing that meets our design requirements, we rely on pub-
lished values of strengths for the various sizes and types of casing. The
source of these design strengths is API Bulletin 5C2, which essentially is
a collection of tables listing the dimensions and strengths of the various
sizes and grades of API casing. The source of the strength values for these
tables is the collection of formulas published in API Bulletin 5C3. These
formulas have been used for many years with good success. 

It is also necessary to specify what we mean by collapse strength and
burst strength as used in this text for basic casing design. What we call the
collapse strength is listed in API Bulletin 5C2 as “Collapse Resistance.” It
is the minimum external pressure at which the pipe collapses, as calcu-
lated from formulas in API Bulletin 5C3. It assumes no internal pressure
or axial load on the pipe. The burst strength as we use it here is listed in
API Bulletin 5C2 as “Internal Yield Pressure.” It is the internal pressure at
which the inner wall of the pipe or coupling yields, as calculated from the
formulas in API Bulletin 5C3. It is not the pressure at which the pipe actu-
ally ruptures or bursts, but we use it as the limiting pressure. It assumes no
external pressure or axial load on the pipe. 

In recent times, certain limitations have been recognized with some of
the formulas of API Bulletin 5C3, and an effort is well underway to revise
these in light of modern manufacturing processes and casing require-
ments. Currently, in the adoption procedure for the ISO 10400 standards,
the new formulas are recognized by most to be an improvement over pre-
vious formulas, however, they are not yet officially adopted at the time of
this writing. For now, we take all strength values from the current API
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Bulletin 5C2 and formulas from API Bulletin 5C3. When these docu-
ments are revised, they will not affect this basic design procedure, other
than to change the published strength values slightly. We discuss the new
formulas and approaches in Chapter 8, but for now, we just mention it to
inform you that at least some of the strength values we use are likely to
change in the near future, but those changes do not affect the basic casing
design procedures we use. 

Simplicity—the Key to Success 

One thing to always keep in mind about different weights and grades of pipe,
as well as connections, is that the fewer different types you have in a single
string, the better. The more different types you have, the easier it is for a mis-
take to occur while running it in the hole. For every point in our design
where we change from one type connection to another, we require a cross-
over sub or joint. In fact, if we are prudent operators, we require two cross-
overs on location for each of those points, in case one is damaged while
running the casing. Not many things can be worse than running a string of
13⅜ in. casing to 10,000 ft and damage a crossover joint by cross-threading
it when the casing is 2000 ft from bottom. Yes, it does happen! If you do not
have a spare, then you have to pull 8000 ft of 13⅜ in. casing out of the hole,
laying it down in singles as you pull it. Another thing you will learn if you
ever have to pull casing is that often the mill end of the coupling will back
out instead of the field end, so you need backup tong jaws that fit the cou-
pling as opposed to the pipe body, as used when running the casing. You also
will discover that casing made up to the maximum recommended makeup
torque often has galled threads when it is backed out and requires a good
number of the joints to be replaced. These are things we must avoid. The
casing running process with most rigs of the world is an intense and contin-
uous operation. To stop or interrupt the process, even momentarily, in many
areas, will cause the string to stick off bottom. Pipe is rolled off pipe racks or
off-loaded from barges as it is being run into the well bore and usually part,
if not most, of this operation occurs at night. Hence, the simpler the design,
the less is the likelihood of a costly mistake. Today, in many cases, the rig
costs are so high compared to the casing costs that there is no cost benefit to
having more than one type of casing in a particular string. This is especially
true for shallower strings. In those cases, we might choose just one weight,
grade, and connection that meets all the load criteria and disregard any cost
savings of multiple weights or grades as inconsequential compared to the rig
cost. This is common on many offshore wells and remote wells. However,
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that does not apply for most wells drilled in the world, and we would not
learn much about casing design if we were to adopt that philosophy here.

Another point about simplicity is that the best way to let people in the
field know that you are inexperienced and have never run any casing your-
self is to send a casing design and casing string to the field that has several
short sections of various weights, grades, or connections that might require
crossover joints. Most operators seldom run a section of different type of
casing that is less than 1000 ft in length and some set 2000 ft as a min-
imum. There is almost never any justification for running a section less
than 500 ft in length, except in short strings of conductor and surface
casing. Another exception might be made in the case where a few thick
wall joints are placed at the top of a string for wear, wellhead support, or
gauge control, where that same pipe is also in the string further down hole.

Example 5–4 Surface Casing Example—Preliminary Selection
For this example, we assume that we have the casing described in
Table 5–3 available in our inventory for this particular well.

We can begin with either the burst or collapse, and it is really immate-
rial where we start. For most surface casing strings, collapse usually is
more critical than burst, and the initial selection for collapse often satis-
fies the requirements for burst, too. That said, we start with collapse using
the design curve we previously constructed (Figure 5–1). We typically
start at the top of the design curve and the lowest collapse strength pipe
we have and see where the collapse rating of that section intersects our

Table 5–3 Available 13⅜ in. Surface Casing for the Example

Wt.
lb/ft

Grade Connection
ID
in.

Collapse
Pressure

lbf/in.2

Internal 
Yield
lbf/in.2

Joint
Strength
1000 lbf

54.5 K-55 ST&C 12.615 1130 2730 547

61 K-55 ST&C 12.515 1540 3090 633

68 K-55 ST&C 12.415 1950 3450 718

68 N-80 ST&C 12.415 2260 5020 963

72 N-80 ST&C 12.347 2670 5380 1040
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design line. In this case, the pipe with the lowest collapse rating, the 54.5
lb/ft K-55 which has a collapse rating of 1130 lbf/in.2, can be run to a
depth of 2100 ft before its collapse rating is exceeded on our design curve
(Figure 5–7). At that point, we go to the casing with the next higher col-
lapse rating; it is 61 lb/ft K-55 with a collapse rating of 1540 lbf/in.2. We
see that rating is exceeded by our design curve at a depth of about 2850 ft.
Then, we select the casing with the next higher collapse rating, which is
68 lb/ft K-55 with a collapse rating of 1950 lbf/in.2, which exceeds our
maximum collapse design load of 1620 lbf/in.2 at bottom.

So our collapse design is satisfied by a string of 13⅜ in. K-55 casing
with 54.5 lb/ft from 0 to 2100 ft, 61 lb/ft from 2100 to 2850 ft, and 68 lb/ft
from 2850 to 3000 ft. This string will work and probably is the least
costly string we could run using our available inventory. However,
remember what we said about simplicity. We have a 150 ft section of
casing on bottom. What should we do about this? There is nothing wrong
with it as far as our design is concerned, but do we really want to send
three different sections of pipe to the location, one of which is only 150 ft
in length (five joints)? We are going to opt for simplicity and say we do
not. We have two obvious choices. One, we could just run the 61 lb/ft
casing all the way to bottom and say that the chances are slim that it
would ever experience the worst-case collapse load. But there is a
problem with that approach. Suppose a joint of that casing is defective
and it did collapse during the drilling of this well, not in the last 150 ft but
somewhere above that point. It clearly is not the fault of the design but
rather a defective joint. Now suppose that one of the investors in this well
is a lawyer who knows nothing about the oil field but decides he wants his
money back. The pipe supplier may claim that you cannot prove the joint
was defective, since it is not available for inspection. The lawyer does not
care whose fault it is; he just wants out of his obligation to pay for his
share of the working interest cost of a disastrous well that had to be aban-
doned before reaching its objective. From his point of view, it is not his
fault; it is yours, because you designed a casing string and then did not
follow your own design parameters. When you are on the witness stand,
what is going to be your answer as to why you ignored the design factor
you specified? This is not some preposterous scenario; this is the way it
works in real life. The point here is that, if you select a design factor of
1.125 in collapse, you must stay with it. At this point, you may elect to
change your design factor to say 1.0, citing the remote possibility of a
worst-case collapse load actually occurring. That might be a reasonable
choice, although it might appear you were more influenced by cost than
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engineering judgment. If you make that choice, you should make a new
design curve and not just mark up the original one. (And, you should
probably destroy the first one. This is not to be construed as legal advice,
just common sense.) Now, I am not going to advise such a step here,
because we are going to stay with our original design factor. To simplify
our design, we elect to eliminate the 61 lb/ft section and run 68 lb/ft pipe
from 2100 to 3000 ft. Many operators would have just elected to run 68
lb/ft all the way from surface to 3000 ft. That is fine, too, if the additional
cost is not a consequence and you are not trying, as we are here, to learn
about casing design.

Now that we have made our selection based on collapse design load,
we check that selection for burst and adjust it as necessary. To do this, we
plot the burst ratings of our selected casing string on the burst load chart
(see Figure 5–8). We see that the burst rating of the casing string exceeds
the burst design at all points. It is typical that a surface casing sting that
meets the collapse requirement also meets or exceeds the burst require-
ments without necessity of modification, but sometimes it does not. In any
case, we always check it to be sure. 

Figure 5–7 Collapse selection for the surface casing example.
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This concludes the preliminary selection process for the surface casing.
Once we conclude this selection process, we can determine the weight of
the string and the axial loads. We proceed with the selection preliminary
selection process for the remaining strings before we consider the axial
loads in a later section.

Example 5–5 Intermediate Casing Example—Preliminary Selection

We assume that we have available the 9⅝ in. casing of Table 5–4 in our
inventory for use in this well.

Note that, since we elected to drill an 8½ in. hole from the bottom of
the intermediate casing to total depth, we may have a problem with some
of the casing in this inventory. If we use any 53.5 lb/ft casing in the
intermediate string, it must be specially drifted for an 8½ in. bit. The
58.4 lb/ft casing cannot be used at all unless we use a smaller bit, and we
do not consider this an option for our well.

In a precursory examination of the available pipe and the loads, we
can see almost immediately that the collapse loading is very small and the
weakest pipe in our inventory easily could sustain the maximum collapse
load. We also note that the burst load is relatively high and the first three
items in our inventory will not sustain the burst load at the bottom of the

Figure 5–8 Burst selection for the surface casing example.
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string, where the burst load is the lowest. Therefore, it looks like the best
place to start the selection is with the burst design, and that is fairly typ-
ical of intermediate strings run to protect lower-pressured formations
from higher pressures below. In the cases where the intermediate casing is
run to protect lower-pressured formations below, we would probably start
with the collapse selection first. Again, it really makes no difference
whether we start with the collapse or burst selection, but if we start with
the most critical one first it results in less revision.

We start our burst selection at the top of the string and plot the various
sections as to their burst ratings onto the design curve, see Figure 5–9.

In this design, we selected some 40 lb/ft, 43.5 lb/ft, 47 lb/ft, and
53.5 lb/ft N-80 casing in the string. This might constitute an optimum
design from an engineering point of view, but do we really want to run
something like this in our well? First of all, two things about this string
are questionable. First is that the top section is only about 750 ft in length,
and we said we would not run a section of less that 1000 ft in length. So
we can eliminate that section by running the 47 lb/ft pipe from 2000 ft to

Table 5–4 Available 9⅝ in. Intermediate Casing for the Example Well

Wt.
lb/ft

Grade Connection
ID
in.

Collapse 
Pressure

lbf/in.2

Internal 
Yield
lbf/in.2

Joint
Strength
1000 lbf

36 K-55 ST&C 8.921 2020 3520 423

40 K-55 ST&C 8.835 2570 3950 486

40 K-55 LT&C 8.835 2570 3950 561

40 N-80 LT&C 8.835 3090 5750 737

43.5 N-80 LT&C 8.755 3810 6330 825

47 N-80 LT&C 8.681 4750 6870 905

53.5 N-80 LT&C 8.535* 6620 7930 1062

58.4 N-80 LT&C 8.435* 7890 8650 1167

43.5 P-110 LT&C 8.755 4420 8700 1105

47 P-110 LT&C 8.681 5300 9440 1213

53.5 P-110 LT&C 8.535* 7950 10900 1422
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the top. The second problem we face is that the 53.5 lb/ft pipe must be
specially drifted to be sure that an 8½ in. bit will pass through it. What if
it will not? We would then go to one of the P-110 grades, say, the 43.5 lb/
ft. And that brings up another point. If this well is in a hard rock area,
where we will be drilling for a long time below the intermediate casing,
do we think that the 43.5 lb/ft pipe has enough wall thickness to sustain
the wear caused by the rotating tool joints and still maintain sufficient
burst resistance. This is not an easy question to answer, but is quite typ-
ical, because wear often is a problem with intermediate strings and the
worst wear often occurs nearer the surface than further down hole. We
discuss wear later in this text and bring it up at this point only because this
is the kind of question that often arises with intermediate casing. 

For our purposes, we assume that we drifted the 53.5 lb/ft N-80
casing for an 8½ in. bit, and it will pass freely through the pipe. This
design probably still has more sections in it than most operators would
choose to run, but we are going to stay with it to illustrate the design pro-
cess. Figure 5–10 shows our selection.

A quick check shows that all the casing we selected easily exceeds the
collapse requirements. In a case like this, we seldom bother to plot it, but
we will do so in Figure 5–11 for illustration.

Figure 5–9 Tentative burst selection for the intermediate casing example.
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Figure 5–10 Burst selection for the intermediate casing example.

Figure 5–11 Collapse selection for intermediate casing example.
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Example 5–6 Production Casing Example—Preliminary Selection

Table 5–5 shows the 7 in. casing available to us for this production string.
As to whether to start with the collapse or burst design curves for the

selection of the production casing, it makes little difference, because most
often we have to adjust the string for burst if we start with collapse and
vice versa. For the example, we start at the bottom of the string with col-
lapse, Figure 5–12. Note that we did not select casing all the way to the top
based on collapse. That is because the burst load requires us to change it
anyway. Now, using the burst design curve, we plot the casing we selected
for collapse on the chart (Figure 5–13) and add or modify the upper por-
tion for burst.

We can see on Figure 5–13 that the 29 lb/ft N-80 will not work at all,
so we actually went one step too far in the collapse selection. We started
at the top on the burst design and worked down to the collapse selection. 

This completes our preliminary selection for collapse and burst on all
three casing strings in our example well. Next, we look at the axial loads.

Table 5–5 Available 7 in. Production Casing for the Example Well

Wt.
lb/ft

Grade Connection
ID
in.

Collapse
Pressure

lbf/in2

Internal 
Yield 
lbf/in2

Joint
Strength
1000 lbf

26 N-80 LT&C 6.276 5,410 7,240 519

29 N-80 LT&C 6.184 7,030 8,160 597

32 N-80 LT&C 6.094 8,600 9,060 672

26 P-110 LT&C 6.276 6,230 9,960 693

29 P-110 LT&C 6.184 8,530 11,220 797

32 P-110 LT&C 6.094 10,780 12,460 897

35 P-110 LT&C 6.004 13,030 12,700 996
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Figure 5–12 Collapse selection for the production casing example.

Figure 5–13 Burst selection for the production casing example.

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Collapse Load (psi)

M
ea

su
re

d 
D

ep
th

 (f
t)

Collapse Load
Line

Collapse Design
Line

29 lb/ft, N-80

35 lb/ft, P-110

32 lb/ft, P-110

32 lb/ft, N-80

0

2000

4000

6000

8000

10000

12000

14000

16000

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Burst Load (psi)

M
ea

su
re

d 
D

ep
th

 (f
t)

Burst Load
Line

Burst Design
Line 35 lb/ft, P-110

32 lb/ft, P-110

32 lb/ft, N-80

29 lb/ft, P-110



154 Chapter 5—Design Loads and Casing Selection

5.5 Axial Loads
We did not consider axial loads at the time we made our collapse and
burst load curves for the simple reason that we cannot know the axial
loads until we know the weight of the casing. Therefore, we selected
casing that would satisfy our design parameters for both collapse and
burst, and having made that preliminary selection, we now determine the
axial loads and possibly adjust our selection if the axial loads are too great
for the casing we selected for collapse and burst.

There are four sources of axial load (tension or compression) in a
casing string:

1. Gravitational forces (weight and buoyancy).

2. Bore-hole friction.

3. Bending.

4. Temperature changes.

The axial load in a casing string at any point due to gravity or weight is a
function of the buoyancy of the drilling fluid and the inclination of the
well bore. The bore-hole friction is a function of gravity, buoyancy, well
bore inclination, and curvature, also the axial load in the pipe. In the case
of a curved well bore, the axial load is a function of the friction, but the
friction itself is also a function of the axial load; in other words, they are
not independent of each other. We are not going to consider directional
wells or bore-hole friction at this time but discuss them in Chapter 9. 

There are a number of considerations when it comes to determining
the design criteria for axially loaded casing. Here are a few questions we
might have: 

• Weight of casing—in air or buoyed weight?

• Bore-hole friction—how much?

• Design factors—an overpull margin or a design factor?

We discuss these in the following sections.

5.5.1 Axial Load Considerations

Weight of Casing

When we work with casing in a well bore, we must consider its weight
and the amount of tension in the string due to that weight. What measure
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do we use for the weight? Do we use the weight of the casing in air or the
buoyed weight of the casing in the drilling fluid in the hole? As hard as it
may be to believe, this question has no universally accepted answer in oil-
field practice today. Many use the weight in air, claiming that it gives an
extra margin of safety. Others say the buoyed weight is more realistic. We
illustrate both methods. The calculation procedures were shown in
Chapter 2, but we give examples in the following sections.

Bore-Hole Friction

We know that there is friction in a well bore, and as we move the pipe, the
friction increases or decreases the axial load in the casing, depending on
whether the pipe motion is down or up. In directional wells, we have soft-
ware that can predict the friction with reasonable accuracy while we are in
the design process. For “vertical” wells, we know there is some amount of
friction, but we have no means of calculating it, unless we assume some
well-bore path and use the software as we would for a directional well.
We can measure the pickup and slack-off weight while drilling the well,
whether it is a vertical well or a directional well. The problem with this is
that we usually have to design and purchase the casing string far in
advance of the point where we can measure the actual friction in a partic-
ular well. Also, the friction load we measure with the drill string is not the
same as the friction load the casing string experiences. For most
near-vertical wells, we do not consider the friction specifically, but we
allow for it with a design factor. That is one reason the design factor for
the axial load usually is much larger than the design factor for collapse or
burst. We have a much better chance of predicting the worst-case loading
for collapse and burst than in tension. At least, we have a much better
chance when we are sitting in an office several months before the well
actually is drilled. We discuss bore-hole friction in much more detail in
Chapter 9, but for now, we assume we can avoid estimating it if we select
an appropriate design factor.

Design Factor

When it comes to the tensile design of casing, there are two schools of
thought. One is to use a design factor, say 1.6, and the other is to use a
specified amount of overpull, say 100,000 lbf. It is quite common to use
both and say that the design should incorporate whichever one leads to the
strongest design. In cases where the design factor results in the higher
value, that usually is the case only near the surface and the over-pull is
greater near the bottom.
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The significance of the design factor or over-pull is especially critical
in casing design, because of the bore-hole friction and the fact that its
magnitude generally is not known when the casing string is designed.
Friction force opposes the motion of the pipe, so we might think that it is
of little significance in the design, since it reduces the axial tension only
as the casing is run into the well. While that is true, there are two other
considerations. One is that, if we intend to reciprocate the casing during
cementing (as is desirable for a good primary cement job), then the fric-
tion increases the axial tensile load when the pipe is in an upward motion.
The second, and extremely important, consideration is that, if a problem is
encountered in running the casing, the casing string may have to be pulled
out of the hole before reaching bottom. While this is rare, it does happen.
So the design factor or over-pull must account for the fact that the casing
might be subjected to the full amount of friction in an upward motion.
That is one reason for the popularity of an over-pull margin rather than a
typical design factor. It is easier for the driller if he knows that he can
safely pull a certain amount, say, 100,000 lbf, above the weight of the
casing string. 

5.5.2 Types of Axial Loads
If we chose to use the weight of the casing in air, the design process is
quite simple. The drawback to the approach is that it often leads to an
overdesign of the string, since the casing never actually is suspended in
air. While the weight in air approach was quite common at one time, it is
less favored by most operators today. 

The buoyed weight of the casing in the drilling fluid generally is
assumed as the most common approach for designing casing to withstand
axial loads. There are two ways to go about this. One way is to use the
true axial load and the other is to use the effective axial load. We dis-
cussed these in Chapter 2 when we discussed hydrostatics.

• True axial load comes from the actual hydrostatic forces acting on 
the tube and is valid for all bodies.

• Effective axial load comes from Archimedes’ principle, which 
does not give us information about the axial load within the 
casing body.

Figure 5–14 shows a plot of the axial load of our example surface casing
string in air (unbuoyed), the true axial load in 1.1 sg mud, and the effec-
tive axial load, also in 1.1 sg mud.
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Note the true axial load curve on the left. It actually is in compression
at the bottom, because of the hydrostatic pressure on the cross-sectional
area of the tube at the bottom. Note also that, as you move up the curve
from bottom to 2100 feet, the curve shifts slightly. That is due to the dif-
ference in cross-sectional area of the 54.5 lb/ft and the 68 lb/ft casing at
that point. The tension increases, meaning that the net hydrostatic force is
acting downward, because the internal diameter of the 68 lb/ft casing
below is smaller than the internal diameter of the 54.5 lb/ft pipe above.
(Had the heavier pipe been on top, the curve would have shifted in the
opposite direction.)

Another thing to note about these curves is that the unbuoyed load
curve essentially parallels the true load curve, except for the change in
cross-sectional area. It is much easier to calculate manually, since there
are no differences in cross-sectional areas and hydrostatic pressures to
consider. That is why, in the past, many used this as the basis for their
design (along with an appropriate design factor). And, as stated previ-
ously, many still use it, especially when doing manual calculations for
calculating the axial load. Some also justify its use by stating that, since
we do not know the magnitude of bore-hole friction in the well when we
are designing the casing string, the axial load in air is a better approach.

Figure 5–14 Distributed axial load in the surface casing example.
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True Axial Load

We showed in Chapter 2 how to calculate the true axial load, using for-
mulas that contain the pressure and cross-sectional areas of the pipe at
various depths. We also saw how we could make the calculation using the
effective axial load and correcting it to true axial load a key points by sub-
tracting the pressure/area effects. 

Effective Axial Load

Also in Chapter 2, we showed how the effective axial load is calculated
using a buoyancy factor and the specific weight of the various sections of
casing. If you are using torque and drag software to determine the axial
load, then you should be aware that the axial load most models give are
the effective axial load plus friction. You easily can determine if your
torque and drag software is giving you the effective axial load by looking
at the load at the bottom of the casing string. If it is zero, then it is the
effective axial load. The effective axial load can easily be converted to the
true axial load by subtracting the pressure/area term from the effective
axial load at key points where the cross-sectional area changes.

Example 5–7 Surface Casing Example—Axial Loads

Now that we have discussed the various methods of calculating the axial
load curve, let us proceed with the axial load design of the surface casing
string. For this example, we use the unbuoyed axial load and a design factor
of 1.6 and 100,000 lbf overpull, whichever is greater (see Figure 5–15).

In this case, the design factor of 1.6 is less than the 100,000 lbf overpull
at all points, so we use the overpull line as the design line. In Figure 5–16,
we plot the casing we already selected to meet the collapse and burst require-
ments, and we find that it easily exceeds the tension requirements also. 

This is fairly typical of many surface strings, but the tensile design
should always be checked to be certain. The design summary of the sur-
face casing is shown in Table 5–6 on page 179.

Example 5–8 Intermediate Casing Example—Axial Loads

Now we look at the axial load for the intermediate casing string. The
casing is run in 1.4 sg mud, and for this example, we use the true axial
load of the casing. For a design factor, we use 1.6. Rather than use the
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Figure 5–15 Surface casing axial design load example.

Figure 5–16 Surface casing design load with axial strengths of preliminary 
collapse and burst selection.

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Axial Load (1000 lbf)

D
ep

th
 (f

t)

Unbuoyed Axial Load

1.6 Design Factor

100,000 lbf over pull

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Axial Load (1000 lbf)

D
ep

th
 (f

t)

Unbuoyed Axial Load

1.6 Design Factor

100,000 lbf overpull

54.5 lb/ft, K-55

68 lb/ft, K-55



160 Chapter 5—Design Loads and Casing Selection

direct formulas for the true axial load, we calculate the effective load first
and then correct it to the true axial load. We show the calculation results
in Table 5–8 on page 180. The plot of Figure 5–17 shows us that all of the
casing is well above the tensile limit.

The casing selection that satisfies burst and collapse also satisfies our
tension load and design factors. If these had not been satisfied, at this
point, we would adjust the casing string so that it would satisfy the tension
requirements. This example is summarized in Table 5–9 on page 180.

Example 5–9 Production Casing Example—Axial Loads

For the production casing example, we use the true axial load in 1.82 sg
mud and a design factor of 1.6 or 100,000 lbf overpull. Then we plot these
on Figure 5–18 for designing the tension.

As can be seen, we got lucky, because the string we designed for col-
lapse and burst meets the design load for tension, too. While this is often
the case with higher pressures, the general case is that deeper wells with
lower pressures require adjustment of the preliminary selection for ten-

Figure 5–17 True axial load for the 9 ⅝ in. intermediate casing example.
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sion. This completes our production casing design, which is summarized
in Table 5–7 on page 179.

5.6 Collapse with Combined Loads
All casing is loaded with a combination of loads, such as tension, internal
pressure, and external pressure. The significance of this is that, in the case
of combined loads, the table values we used for collapse, burst, and ten-
sion no longer are valid. For instance, the collapse value of the 13⅜ in.
54.5 lb/ft K-55 casing was listed as 1130 lbf/in.2. But that value is valid
only if there is no axial tension or compression in the casing. In the pres-
ence of tension, the collapse value is lower, and in the presence of com-
pression, the collapse value may be higher. So we look at combined loads
and determine whether or not we need to refine our casing design.

5.6.1 Combined Loads
Casing designs for many wells ignore altogether the effects of combined
loads, and many operators have never suffered any consequences for
having done so. The reasons are that they have used large-enough design
factors in collapse, so that combined loading effects are never seen, the

Figure 5–18 Axial design load for the production casing example.
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actual loads on their casing strings have been lower than the worst-case
design loads, or some combination of those two. However, casing failures
due to combined loading do occur. And, when they happen, the conse-
quences are serious to the extent that the well may be lost.

The subject of combined loading is a bit complicated and we delay a
discussion of the mechanics until Chapter 8, but we need some tools we
can use for basic casing design. We present some methods in this section
without discussion as to the background, which we will leave for later
chapters.

5.6.2 Simplified Method
There is a very simple method for adjusting casing to account for com-
bined loads. It has been used by a number of operating companies for
many years, and when combined with design factors, it has proven work-
able for most normal vertical wells. It has its basis in a more theoretical
context but has been simplified for easy use. Some would say it is over-
simplified and that is an accurate statement, because it departs from
theory and the results tend to be somewhat conservative. It is based on the
graph shown in Figure 5–19.

The way this chart works is that we take the tension load of the
casing at some point. We divide it by the joint tensile strength of the
casing to get a decimal fraction. Then, we then locate that point on the
horizontal tension/compression axis. From that point, we go down verti-
cally to the point of intersection with the ellipse. From that intersection,
we go horizontally to the vertical burst/collapse axis and read the col-
lapse fraction. We multiply that fraction times the collapse rating of the
pipe: that gives us the reduced collapse rating of the casing under that
amount of tensile load. 

Example 5–10 Example of the Simplified Method

Joint tensile strength = 547,000 lbf

Joint collapse rating = 1,130 lbf/in.2

Tensile load = 61,200 lbf
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We determine the fraction of tensile load to the tensile strength:

We go to the positive 0.1 point on the horizontal axis, down to the inter-
section with the ellipse, then horizontally to the vertical axis, where we
read a value of 0.94. We multiply this fraction times the collapse rating of
the pipe to give us a reduced collapse rating:

This value of 1060 lbf/in.2 is taken to be the collapse rating at that point. If
our design curve has a higher value, then we must adjust our casing string
accordingly.

The chart in this method is based on a yield criterion for steel known
as the von Mises yield criterion, which we discuss in more detail in
Chapter 7. There have been a number of similar uses of the chart in
Figure 5–19. A formula can be derived from the curve for the quadrant
concerning tension and collapse:

Figure 5–19 Chart for simplified combined loading corrections (use with 
caution).
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(5.1)

where

To calculate the reduced collapse pressure of casing with axial tension,
the factor calculated in equation (5.1) is multiplied by the published col-
lapse pressure (without tension):

(5.2)

This method should be used with caution: perhaps I should not even include
it here, but it has been used for many years by many people for noncritical
wells with success. It is not the API method for dealing with combined
loads, nor is it the improved method up for adoption by the ISO. It might be
called a quick-and-dirty method that proved successful in many normal
pressured wells all over the world before the days of electronic calculators
and computers. While that approach is simple in its graphical form, it is not
as well accepted if one is actually going to do the calculations. The reason
for this is that the graph is based on stresses rather than loads and joint
strength. The joint strength of a tube in tension is based on the connection
strength rather than the cross-sectional area of the tube itself.

You may also note that the chart in this procedure shows a reduction
of burst strength in axial compression. Additionally, it shows an increase
in collapse strength in axial compression and an increase in burst strength
in axial tension. While this is true, almost no one uses a simple chart like
this for those cases in practice. Increases in burst or collapse due to axial
loads are seldom considered in basic casing design. Likewise, a case of
reduced burst, which almost always results from axial compression due to
thermal expansion, is not considered using such a simple method. These
types of combined loads are generally considered only in more-advanced
designs and more-sophisticated methods are used rather than reading
simple values from a chart like this. We discuss those issues in Chapter 8.
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5.6.3 Better Simplified Method
A more consistent way of expressing the reduced collapse fraction based
on stresses is as follows:

(5.3)

where

and the reduced collapse rating is calculated with equation (5.2). (Note
that the difference between the two versions is that the first one uses axial
stress, which is the axial load divided by the cross-sectional area of the
tube that appears in the second version.) A similar approach was proposed
by Wescott, Dunlop, and Kimler (1940) that attempts to account for the
difference in the thickness of the tube body and the area under the threads
so that one may use the axial loads rather than calculating the axial stress.
Their formula is

(5.4)
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where, as before,

Using equation (5.1) in our example, we get the same conservative col-
lapse value we got from the curve in Figure 5–19 (assuming we can read
the graph accurately): 

If, instead, we use equation (5.3) for this example, we get a slightly higher
value for the reduced collapse:

Using equation (5.4) we get
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The difference in these last two equations is that equation (5.3) is based
on the von Mises ellipse:

and equation (5.4) is a modified version that uses the axial load and the
joint strength as developed by Wescott et al. (1940), based on the ellipse:

The axial stress formula, equation (5.3) has been used for many years
with success and generally is preferable to the conservative method of
equation (5.1). It also appears in the minimum casing design requirements
of the Alberta Energy and Utilities Board in Canada as the preferred for-
mula (EUB 010, 2004, draft). The second formula, equation (5.4), cur-
rently appears in the catalog of a major casing manufacturer and has seen
many years of use. It might appear that the difference between these for-
mulas is a bit trivial, but since they appear in various sources, usually
without explanation, our purpose here has been to explain the differences.

5.6.4 Historical API Method
The API has a method for calculating the effects of combined loads, and it
is published in API Bulletin 5C3. The reason it is referred to as the histor-
ical API method is because it may be phased out with the adoption of the
new ISO 10400 standards. But, as of this writing, the new ISO standard is
not yet official and the ISO standard currently in effect is just a copy of
the current API standard. The API method for dealing with combined
loads utilizes the same ellipse used previously but with different labels on
the axes. We explain the derivation in Chapter 8, but for now, we do not
worry about that. The axes in this case (see Figure 5–20) include the
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internal pressure and are in terms of axial stress, which is the axial load
divided by the cross-sectional area of the tube.

The way the API method works is that we determine the axial tension
in the pipe divide it by the cross-sectional area of the tube then divide that
by the yield strength of the pipe. The value is a decimal fraction, which
we locate on the horizontal axis exactly as we did before. The value on the
vertical axis, we take to be a fraction of original yield strength of the tube
in collapse (instead of the reduced collapse rating). We multiply the orig-
inal yield of the pipe by this fraction to give us a reduced yield value. This
reduced yield value is substituted into one of the four API collapse for-
mulas to calculate the reduced collapse rating of the pipe. Although this
method is not especially good engineering, it is preferable to the previous
simplified method. Let us look at an example that requires a little more
data than the previous example but with the same load.

Example 5–11 Example of API Method

Joint tensile strength = 547,000 lbf

Collapse rating = 1,130 lbf/in.2

Yield strength,  = 55,000 lbf/in.2 (K-55)

Diameter (outside), do = 13.375 in.

Figure 5–20 The API ellipse for combined loading.
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Diameter (internal), di = 12.615 in.

Internal pressure, pi = 0 lbf/in.2

Axial load = 61,200 lbf

We first determine the axial stress plus the internal pressure divided by the
yield strength, which is the positive horizontal axis of Figure 5–20
(remember, the axial stress, σz, is the axial load divided by the cross-
sectional area of the tube):

We find 0.072 on the positive horizontal axis, go down to intersect the
ellipse, then left horizontally to the vertical axis, and read the fraction
there, which is about 0.96. Or we could calculate it directly using
equation (5.3), in which case it would be 0.962: 

We multiply this times the yield strength to give us a reduced yield
strength, :
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So far, this is exactly what we did numerically with equation (5.3), except
that, instead of multiplying the factor by the collapse pressure as before,
we multiply it by the yield strength to get a reduced yield strength value.
We plug this reduced yield value into the appropriate API collapse
formula to calculate the reduced collapse rating:

where

We see that this gives us a different answer and our simplified method is a
bit conservative. That is probably one reason why it was used so often.
You are probably wondering about the API formula we used, since we
have not referred to it previously. Four API formulas are used for calcu-
lating collapse: 

• Yield strength collapse formula.

• Plastic collapse formula.

• Transition collapse formula.

• Elastic collapse formula.
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The first three are dependent on the yield strength and the ratio of the out-
side diameter to the wall thickness. The formula we just used is the transi-
tion collapse formula. There is a range of values for the do/t ratios and
yield strengths for which the individual collapse equations are valid. Our
particular yield and do/t ratio fell within the valid range of that particular
equation, the transition collapse formula. The constants F and G in the
formula are dependent on the yield strength, and there are formulas for
calculating them also. In the case of standard yield strengths, like
55,000 lbf/in.2, for instance, there are tables specifying the values of the
constants, but for our case of a yield of 52,800 lbf/in.2, a nonstandard
yield value, all the constants must be calculated. There are five constants
in all, though only two appear in the transition collapse formula. In this
case, all five had to be calculated to determine the correct formula to use.
All these formulas appear in API 5C3 and ISO 10400.

It may appear that we are avoiding a lot of detail here, and we are. This
topic is covered in Chapter 8 in its entirety, but for now, all I am trying to
show you is that it is a tedious process to do manually using the historical
API method. I am not trying to make a case for the simplified method,
however. One can easily program the API method to a spreadsheet and
avoid the tedium and inherent errors in doing the calculations manually.

The API Method with Tables

One need not do the preceding calculations to use the historical API method.
Tables published in API Bulletin 5C2 allow one to look up the reduced col-
lapse value directly. For instance, in the example, we could use Table 4 in
5C2. It is in terms of axial stress rather than axial load, but it also gives the
cross-sectional area of the tube to make the axial stress calculation easier:

The table gives the collapse pressure corresponding to axial stress in 5000
lbf/in.2 increments, so for zero stress. the collapse pressure is 1130 lbf/in,2,
as we already knew, and at 5000 lbf/in.2 axial stress, the collapse value is
1120 lbf/in.2. Since collapse values are rounded to the nearest 10 lbf/in.2, our
value of axial stress of 3945 lbf/in.2 gives a collapse value of 1120 lbf/in.2,
the same as our calculation. If you do not have a spreadsheet programmed
for the API method, it is much easier to use Table 4 in API Bulletin 5C2.
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5.6.5 New Combined Loads Formula
There is a newer way to calculate the effects of combined tension and col-
lapse loading than the current API method just shown. New and improved
formulas have been proposed, and as already mentioned, these formulas may
be adopted by the ISO in the near future. We discuss those in Chapter 8. 

Example 5–12 Combined Loads for the Production Casing Example

If we look at the summary of the production casing, we see that there
might be a combined tension and collapse problem at the bottom of sec-
tions 2 and 3, where the actual collapse design factors are 1.14, without
tension. At the bottom of section 2, at 12,000 ft, we see that the casing
actually is in compression, so there is no problem there. The bottom of sec-
tion 3 is at 9600 ft, and there is about 42,300 lbf tension at that point. The
casing in section 3 is 32 lb/ft N-80 with a collapse pressure of 8600 lbf/in.2.
If we use equation (5.3) and calculate the reduced collapse, we get

The collapse load at 8600 ft is 

And actual the design factor with the reduced collapse is
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We said that our minimum design factor in collapse is 1.125, so we must
modify our design. We move the bottom of section 3 up to 9500 ft. The
collapse load is less, but there also is greater tension at that point. The ten-
sion is about 45,500 lbf at 9,500 ft. The reduced collapse is

And the collapse load at that point is

And the actual collapse design factor is

We are closer but not there yet. Now, we could go on with this trial and
error, which would be easy if we had it programmed on a spreadsheet, but
we can be smarter than that. We can turn this into an iterative technique
and do it on a computer or graphically. Here is how a graphical method
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works. Suppose we combine all the processes we did already and call the
combined process a function of depth, h. If we plug in the correct depth, it
will give us the correct design factor of 1.125. We could write that like this:

or

In other words, if we plug in the correct value of the depth, h, then y = 0,
otherwise y  0. We can plot our points in a graph of y and h. The point
where y = 0 should give us the correct value of the depth, h. We already
calculated two points for the graph:

We can plot these two points. Figure 5–21 shows the two points, and a
line drawn through them shows that, at y = 0, h = 9380. 

We calculate the design factor at that point to be sure. The tension at
9370 ft is 49,700 lbf: 
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That is accurate to within our round off, but for practical purposes, we
probably just picked a depth of 9300. So our final 7 in. production casing
corrected for tension and collapse is shown in the Table 5–10 on
page 181. This completes our basic casing design example.

Figure 5–21 Collapse/tension interpolation.
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5.7 Additional Consideration—Cost
Generally, cost is the overriding factor in deciding which type of casing to
select when several types of casing satisfy the load requirements of the
design. Obviously, we could select a string of some weight of P-110 grade
pipe that might meet all our design criteria easily. However, the cost of
such a string would far exceed that of a string made up of several weights
of N-80, K-55, and even some P-110, if required. In the designs in this
chapter, our basic premise was to try to select the lowest grade first, then the
lowest weight, because that is how costs tend to run. We also tended to stay
away from the heaviest weight in any grade, since that usually is a special
item, not readily available and often with too small an internal diameter to
use common bit and tool sizes. Market costs vary considerably, and we do
not attempt to put casing costs into our examples here, but in general, the
lower the grade, the lower is the cost. The other thing that complicates the
cost picture is the inventory status within a company and the availability of
certain weights and grades. It may be more costly to purchase some K-55
casing than to use some N-80 already owned by the company or the com-
pany’s partners in some venture. These considerations may override what
we tend to call an optimum design based on a common scale of prices.

5.8 Closure
In the basic designs for surface casing, intermediate casing, and produc-
tion casing that we just examined, we used a variety of design factors. In
two cases, we considered the buoyed weight of the casing in the tension
design; in the other, we did not. We did that primarily to illustrate the dif-
ferent approaches. Typically, a company has a set of design criteria for a
specific area or field or even one used companywide and stays with those
criteria for all designs.

Another point we should make is that we selected from our inventory
of pipe without explanation as to why we chose one as opposed to
another. Many possible combinations would work just as well if not better
than the selections we made. In general, the choice between two different
types of casing for a particular section is based on

• Cost.

• Availability.

• Simplicity of design.

• Minimum number of crossovers.

• Wear considerations.
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The basic casing design process we considered so far in this text is
adequate for the vast majority of all wells drilled in the world every year.
What we covered was more or less a method for basic casing design. We
briefly covered some aspects of combined loading with little explanation.
Again, the reason was to give the reader who has made it thus far through
this text the ability to do basic casing design. We could have gone a bit
further and also included some simple formulas for curved well bores, but
at some point, we have to stop and say that we have covered an adequate
amount for basic casing design and some topics require a better under-
standing of the underlying principles. 

Before leaving this chapter, here is something to think about when you
decide that casing design for shallow wells is just a routine. We might clas-
sify this in the “Just when I thought I knew what I was doing department.”
A production string of 4½ in. H-40 grade casing was run in a shallow well.
It was to be a pumping well, and this was the same type casing that had
been run in hundreds of wells in the same field. The cement was being
displaced, and just as the top wiper plug landed on the float collar, circula-
tion was lost. The drilling fluid level and cement in the annulus fell rapidly.
And it fell, and it continued to fall. Then suddenly, the casing parted at the
first connection below the elevator. A big surprise. A check of its rated
joint strength showed that it certainly had enough tensile strength to be
suspended in air all the way to total depth without failure, but the trouble
was that it did not have enough strength to be suspended in air and full of
water that could not fall out the bottom because of the wiper plug. An
unusual case to be sure, but also it is a reminder that casing design should
not become routine even for shallow wells.
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Table 5–6 Summary of 13⅜ in. Surface Casing Designa

a Minimum design factors: Collapse = 1.125 empty; Burst = 1.125 gas; Tension = 1.6/1000 air

Section Cumulative Axial Load Actual Design Factors

Section OD ID Weight Grade Conn. Bottom Depth Length Weight
Weight

Air
Buoyed
Weight

Bottom Top Collapse Burst Tension

2 13.375 12.615 54.5 K-55 ST&C 2100 2100 114 176 151 37 151 1.13 1.5 3.11

1 13.375 12.415 68 K-55 ST&C 3000 900 61 61 53 –28 33 1.37 3.52 10.38

Total 3000 176

Table 5–7 Summary of the 7 in. Production Casing Designa

a Minimum design factors: Collapse = 1.125 empty; Burst = 1.2 gas; Tension = 1.6 true

 Section Cumulative Axial Load Actual Design Factors

Section OD ID Weight Grade Conn. Btm Depth Length Weight
Weight

Air
Buoyed Weight Bottom Top Collapse Burst Tension

4 7 6.184 29 P-110 LT&C 3500 3500 102 444 341 240 341 2.55 1.31 2.34

3 7 6.094 32 N-80 LT&C 9600 6100 195 342 263 42 237 1.14 1.2 2.84

2 7 6.094 32 P-110 LT&C 12000 2400 77 240 113 –34 42 1.14 2.13 High

1 7 6.004 35 P-110 LT&C 14000 2000 70 174 54 –112 –42 1.72 2.45 High

Total 14000 444
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Table 5–8 True Axial Load, 9 ⅝ in. Intermediate Casing

Section Cumulative Axial Load

Section OD ID Weight Grade Conn.
Bottom 
Depth

Length Weight
Weight

Air
Buoyed
Weight

Bottom Top

5 9.625 8.681 47 N-80 LT&C 2000 2000 94 489 402 308 402

4 9.625 8.535 53.5 N-80 LT&C 4900 2900 155 395 325 151 306

3 9.625 8.681 47 N-80 LT&C 6300 1400 66 240 197 91 157

2 9.625 8.755 43.5 N-80 LT&C 8000 1700 74 174 143 21 95

1 9.625 8.835 40 N-80 LT&C 10500 2500 100 100 82 –73 27

Table 5–9 Summary of 9 ⅝ in. Intermediate Casing Design.a

a Minimum design factors: Collapse = 1.125; Burst = 1.2; Tension = 1.6 true

 Section Cumulative Axial Load Actual Design Factors

Section OD ID Weight Grade Conn. Bottom Depth Length Weight
Weight

Air
Buoyed
Weight

Bottom Top Collapse Burst Tension

5 9.625 8.681 47 N-80 LT&C 2000 2000 94 489 402 308 402 High 1.2 2.25

4 9.625 8.535 53.5 N-80 LT&C 4900 2900 155 395 325 151 306 High 1.28 3.47

3 9.625 8.681 47 N-80 LT&C 6300 1400 66 240 197 91 157 High 1.21 High

2 9.625 8.755 43.5 N-80 LT&C 8000 1700 74 174 143 21 95 2.62 1.2 High

1 9.625 8.835 40 N-80 LT&C 10500 2500 100 100 62 –73 27 1.35 1.21 High

Total 10500 489
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Table 5–10  Summary of 7 in. Production Casing Corrected for Combined Tension and Collapsea

a Minimum design factors: Collapse = 1.125 empty; Burst = 1.2 gas; Tension = 1.6 true

Section Cumulative Axial Load Actual Design Factors

Section OD ID Weight Grade Conn. Btm Depth Length Weight Wt., Air Buoyed Wt. Bottom Top Collapse Burst Tension

4 7 6.184 29 P-110 LT&C 3500 3500 102 444 341 239.5 340.8 2.55 1.31 2.34

3 7 6.094 32 N-80 LT&C 9600 5870 188 342 263 49.7 237.1 1.125b*

b Corrected for tension.

1.2 2.84

2 7 6.094 32 P-110 LT&C 12000 2630 84 154 118 –34.3 49.7 1.14 2.13 High

1 7 6.004 35 P-110 LT&C 14000 2000 70 70 54 –112.3 –42.4 1.72 2.45 High

Total 14000 444
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CHAPTER 6

Running Casing

6.1 Introduction
Many of the problems that occur with casing are not problems with design
but problems with handling and running practices. Some companies have
specific running practices, but they vary little from the basics. Several
things must be kept in mind when transporting, handling, and running
casing. Most of it falls in the category of common sense.

6.2 Transport and Handling

6.2.1 Transport to Location
Some casing gets damaged on the way to the location and on the location
prior to running. There is no good reason for this to happen as often as it
does. It is something that almost always could be avoided, but it still hap-
pens from time to time. Whether casing is loaded on trucks, boats, or
barges, it must be adequately protected. This means not only care in han-
dling while transferring from racks to trucks, to boat, to rig, all joints
should have thread protectors in place and no cables or hooks should be
used that can cause damage to the protectors or the pipe. On racks, trucks,
or boats, the casing should be placed carefully with wood stripping
between layers. The casing should be secured so that it cannot move
during transport.

6.2.2 On Location
Once the casing is on location, it is off-loaded from trucks onto pipe racks
or off workboats or barges onto the rig itself. In some cases, rack capacity
is limited and the casing must remain on barges and transferred to the rig
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as it is being run. Whatever the procedure, it is imperative that the casing
be subjected to as little transfer as possible to reduce the chances for
damage. All transfer must be done using good practices to prevent
damage to the casing. Another important consideration is that the final
transfer, whether to the racks or onto a barge, must be done so that the
casing is in the proper sequence in which it will be run into the hole. It is
not acceptable to try to swap the order of pipe on the racks during the run-
ning process. Such an endeavor most likely will lead to errors. All trans-
fers must be considered when the pipe is loaded at the pipe yard. For
instance, if the casing must be loaded onto trucks for transport to a dock,
loaded directly from the trucks onto workboats, and then off-loaded onto
the rig, all these transfers must be taken into account, so that the order of
the pipe does not have to be shuffled at the rig. There usually is too little
rack space on most offshore rigs to do this, and it is much easier to do it in
a pipe yard, as the pipe is loaded the first time.

Whether or not a company requires some type of electromagnetic
inspection on location is a matter of policy that depends on the type of
well being drilled. However, several things are essential:

• Casing should be drifted on location to ensure that no damage has 
caused a reduction of the internal diameter and that nothing is 
lodged inside the pipe.

• The thread protectors should be removed and the threads cleaned 
with a solvent to remove any unknown type of lubricant on the 
threads.

• The cleaned threads should be visually inspected.

• In offshore locations where bare metal rusts in a matter of 
minutes, the threads should be lubricated as soon as they are 
inspected with the same lubricant that will be used when the 
string is run in the hole. 

• In most cases, the protectors on the pin end should be cleaned and 
reinstalled.

• Do not place any type of equipment, such as casing spiders or 
tongs, on the casing that is on the pipe rack. This is not always 
possible on many small offshore rigs, but it is a bad practice that 
should be avoided.
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6.3 Pipe Measurements
One of the most critical aspects of running casing is the pipe tally or pipe
measurement. There is no way to overemphasize the importance of this
simple task. The success of the entire well depends on it being done cor-
rectly. So who is responsible for the measurements, the rig crew? Abso-
lutely not! The final responsibility of the pipe measurements is the
operator’s representative on location, who is in charge of the well. If the
operator’s representative does not personally do the physical measure-
ment, then he or she, at the very minimum, should witness and record a
duplicate of the measurement. There is no excuse for botching this simple
procedure, yet it continues to happen all too often.

As to the actual measurement procedure, there are many variations on
how and when to do it. Most of the time it is done when the pipe is off-
loaded at the rig onto the rig pipe racks. The best methods involve
removing the protectors (from both ends) and numbering each joint with a
paint-type marker (not chalk) that will remain on the pipe until it goes in
the hole. After a layer of pipe is measured and before it is covered with
another layer, the recorded measurements should be inspected to ascertain
that the joint numbers of the first and last casing joints on the rack corre-
spond to the numbers of the recorded measurements. Then the measure-
ments should be reviewed for any joints whose lengths vary significantly
from the others. If a short or long joint is spotted in the tally, then that
joint should be physically checked on the rack to be sure the recorded
value is not a mistake. Most practical systems involve recording the joint
measurements in a tally book or on some form that lists the joints in
groups of 10. As the total length of each group is summed, the total length
for each 10-joint group is 10 times the average length of joint in that
group. If a mistake has been made in the measurements or the addition, it
often is easy to spot using that method. 

Accuracy is essential in pipe measurements, but it is unbelievable
how many operators pay little attention to this phase of the process. What-
ever system you use, it should be simple and consistent. The final respon-
sibility for an accurate tally lies with the company representative on the
location—not the roughnecks or roustabouts. One more time, there is no
excuse for an incorrect casing tally!

6.4 Crossover Joints and Subs
When the pipe is measured, that is the time to check all the crossover
joints (if required) as to correct threads and correct placement in the string
on the racks or a separate location where they can be added to the string
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when required. Be sure the crossovers are included in the tally. There
should be at least one spare for each type of crossover used. Crossovers
for proprietary connections should be cut only by a machine shop or man-
ufacturer licensed to cut that specific thread. The legal issue is one thing,
but an improperly cut thread can cause failure of the string.

Crossover subs or couplings for API ST&C and LT&C threads need
special comment. A short pin will make up into a long collar so no cross-
over normally is required when ST&C is run above LT&C. The reverse is
not true, because a long pin will not make up into a short coupling. Some
operators get around the crossover issue by purchasing an LT&C coupling
and send it to the rig as a crossover. The idea is that, when it comes time
to make up the LT&C pipe into the top of the ST&C, the short coupling is
removed and the long coupling installed on the short pin. That sounds
easy, but it is a bad practice. It often comes as a big surprise, but the short
collar may not back off easily. We cannot predict the torque required to
remove a coupling that was installed at the mill. It may come off easily if
the pipe is relatively new, but if the pipe has been sitting on a rack in the
hot sun for two or three years, it might require so much torque that the
threads are galled and ruined in the process. This is not uncommon. It is
also not uncommon to see a rig crew use a cutting torch to heat a coupling
to get it off easier. So it is far better to have a dedicated crossover joint or
sub (and a spare) for each place one is needed. The cost saved by pur-
chasing a long coupling for a crossover is miniscule compared to the
potential cost if something goes wrong.

6.5 Running the Casing
The running procedures are important, not only for the success of the
well, but also for personnel safety. Many injuries occur during the running
process because of the relatively large size and weight of the casing, the
length of the joints, and the unfamiliarity of drilling crews with the proce-
dure. For those fortunate enough to work on rigs that have automated pipe
handling systems, it may seem hard to imagine the crude casing running
procedures that are common to many drilling operations.

The running procedure itself must be looked on as a critical operation
in the well. It should not be hurried but should be smooth and efficient.
Typically, the worst thing that can happen during the running procedure is
to have to stop for some reason. In many parts of the world, it might be
possible to stop the operation for several hours or even a day without
sticking the casing. In other parts of the world, if the operation is stopped
for half an hour, the casing will never be moved again. For that reason, all
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the equipment must be in good working order and a certain amount of
redundancy might be desirable.

6.5.1 Getting the Casing to the Rig Floor
Usually the pin protectors are removed before the pipe is picked up to the
V-door of the rig, so as not to slow the makeup process on the rig floor. In
this case, the pin should be protected with a quick-release, rubber pro-
tector until it is up on the rig floor ready to stab. 

6.5.2 Stabbing
The stabbing process is critical to prevent damage to the casing. Not all rigs
have or use adjustable stabbing boards. It is still quite common to see jury-
rigged stabbing boards that are nothing more than some 2" × 8" boards tied
to derrick cross members. Whatever means are used, it is important that
they allow for accurate stabbing of the joints to prevent thread damage. In
some cases, this means shelter from winds that can cause difficulty and mis-
alignment. Some proprietary connections require clamp-on stabbing guides
to protect sealing surfaces and threads during the stabbing process. If such
guides are recommended, they always should be used.

6.5.3 Filling the Casing
In general, the casing should be filled with mud as it is being run into the
well. An adequate fill line should be rigged up to assure that the filling
operation will not slow the running process. In any event, you should
visually assure the casing is full at least every few joints, even if it means
slowing the running process until you see the mud at the surface inside the
casing. It is especially important to be sure that the first joints of casing
run are full because of the buoyancy effect if they are empty. If the first
joints of casing are empty, they actually may begin to float or at least lag
behind the elevators as they go in the hole. This is a recipe for disaster,
because some casing tools with integral slips actually may open without a
load and allow the casing to fall to the bottom. It has happened.

Some companies use differential or automatic-fill float equipment to
aid or replace the surface fill procedure. Where it works, it is fine, but
when it does fail (and it sometimes does), it can cause serious problems if
you are not aware that it has failed and is not allowing fluid into the casing.
Another objection that many operators have with this type of equipment is
that it may allow hole debris to enter the casing at the bottom. Once on
bottom and circulation is initiated, it may plug the float equipment, and
there is no way to circulate it out, short of running pipe inside the casing to
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the float to clean it out. If debris should remain in the casing after circula-
tion and is pushed down to the float collar with the bottom cement wiper
plug and plugs the float, then one is left in the precarious position of
having all the cement inside the casing and no way to pump it in either
direction. Self-fill or differential-fill float equipment has been successful in
hard rock areas, and it has failed mostly in areas of unconsolidated forma-
tions. If you use such equipment, just be aware of the possibilities for
failure—it is much safer in most cases to fill from the surface.

6.5.4 Makeup Torque
All connections should be made up to the proper specified torque while
running. Most casing crews have all the necessary values, but it is good
practice to check that everyone is in agreement. The correct type of thread
lubricant and clean threads are essential for getting the correct amount of
torque. For critical applications, there are special services that measure
both torque and the number of revolutions of the pipe to be sure that the
maximum torque did not occur before the coupling was fully made up.

Another point about proper torque is its measurement. The torque of a
typical casing tong is measured with a hydraulic transducer in the tong
line. In other words, it actually measures tension in the tong line and not
torque. The torque gauge is calibrated such that it multiplies the length of
the tong arm times the tension in the tong line to give the torque reading.
That only works if the tong line is perpendicular to the tong arm when the
torque measurement is made. If the angle is more or less than 90° , then the
actual torque is less than that shown on the gauge. A few degrees is not
going to make an appreciable difference, but it is not uncommon to see
casing tongs rigged up with a considerable deviation from the proper 90° .

One last but most important point about makeup: The best casing
design with best quality pipe can fail if not properly made up on the rig.

6.5.5 Thread Locking
A true disaster associated with casing is the disengagement of the bottom
joint (or several joints) after the casing has been cemented and operations
have begun to drill out the cement inside the casing. The torque from the
rotating bit drilling out the cement and float equipment in the bottom two
joints starts to turn the casing, and the bottom joint backs out at a connec-
tion. Once this happens there usually is no remedy; the hole has been
junked and must be abandoned. The reason that this sort of thing happens
is that the cement around the bottom joints is incompetent, usually because
it has not yet reached a satisfactory strength. It happens most often on
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surface casing, where the temperatures at the shoe are relatively low and
the cement does not set as fast as expected, or the operator is in a hurry to
start drilling and does not allow sufficient time for the cement to set. While
those are cementing issues, which we do not cover here, something often is
done in the running process of the casing to prevent such an event.

Most operators secure the connections on the bottom joints up to one
joint above the float collar to prevent accidental backoff of the casing
while drilling out cement. Chemical kits, consisting primarily of a ther-
moset polymer, are used to “glue” the connections. The resin and hard-
ener are mixed and applied in place of thread lubricant to the cleaned
connections on the float equipment and bottom joints. A couple of prob-
lems are associated with such a practice. One is that most use the com-
pound only on the field makeup part of the connection. They assume that
the mill end will not back out. This is a poor practice. If you are going to
use the locking compound, remove the couplings and “lock” all the
threads not just the field threads. The second problem is that, if something
goes wrong and the casing string has to be pulled back out of the hole
before reaching bottom, those connections cannot be broken out easily.
That presents something of a dilemma, in that if you do it you are safe
from backing off the pipe, but if you have to pull the pipe, you cannot
easily undo it. You actually can heat the pipe with a welding torch to a
temperature where the polymer will break down and the pipe can be
backed out. Those joints should be replaced and not run back in the hole.
An alternate procedure to the thread locking compound is that of tack
welding the couplings on the lower joints. This was common practice for
many years before the polymer compounds were available and is still
common in some areas. However, welding on casing couplings can lead to
serious problems and should be avoided at least for couplings with higher
yield strengths than K-55.

When is thread locking necessary? As already mentioned, casing
back-off while drilling float equipment is almost always caused by drilling
out before the cement has had sufficient time to harden. Hence, the risk of
a joint backing off is most acute on the surface casing or a cemented con-
ductor casing, because the temperatures are relatively low and the cement
sets relatively slowly. In the case of deeper intermediate strings, the issue is
less critical because the temperatures are higher, and it often takes much
longer to change out BOPs, drill strings, and other equipment to resume
drilling. In the case of stage cementing equipment, there is little need to
lock the threads of the stage tools, because for a joint to back-off, all the
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joints below it must also rotate and this is almost impossible for a stage
tool that is a few thousand feet above the casing shoe.

6.5.6 Casing Handling Tools
A wide variety of the elevator and spider assemblies are available to
run casing. Some elevators are what is called square shouldered (see
Figure 6–1), they have no slip elements. Instead, they have an internal
diameter that will fit around the casing body but is too small for a cou-
pling to pass through; they have hinge openings. The spider may be
similar to the elevator and hinged or large enough for the coupling to
pass through with some type of slip assembly built in, or there may be
just a simple set of manual slips.

Elevators and spiders increase in sophistication from there. We
assume that anyone who runs casing knows to select an elevator and
spider combination of sufficient strength to suspend the casing safely.
There is one important point to make in this regard though. The elevator
and spiders (see Figure 6–2 and Figure 6–3) normally used to run heavy
casing strings are rated at 500 tons (1 million lbf) or even 1000 tons
(2 million lbf) and have an internal slip assembly that is either manually
activated with an external lever or is air or hydraulically actuated.

These are very good tools for running heavy strings of casing. The
problem is that even a heavy string of casing is not “heavy” when it starts
in the hole. The efficiency and ease with which the manual lever operates
the slips is such that it is possible for someone on the rig floor to easily
open the slips even with several hundred feet or so of casing suspended in
the spider. A similar problem can occur when the pipe is in the elevator
and an obstruction is hit, causing the load on the elevator to be momen-
tarily released so that the slips jump open. The result in either case is a
portion of a casing string dropping into the hole and going to the bottom.
For this reason, it often is preferred to start a long string of casing in the
hole with lower-rated tools, then switch over to the 500 ton tools when the
casing is at the bottom of the surface casing or some other point where the
running process can be paused to switch the elevator and spider. The pos-
sibility of such an event may sound remote, but a number of these
instances inhabit many companies’ annals of bad events. In one case, a
casing crew member slipped and fell against the release lever on a spider
and dropped 400 ft of 13⅜ in. casing to the bottom of a 5000 ft well. In
another case, the crew was not filling the 7⅝ in. casing properly, and as
the driller lowered the casing, it was buoyed enough that it did not
descend at the same rate as the elevator; the elevator slips opened. No one
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Figure 6–1 A square-shouldered type elevator.

Figure 6–2 A slip-type casing elevator.

Figure 6–3 A slip-type casing spider.
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realized the elevator slips were open until the driller stopped the elevator
above the spider and the casing kept on going right through the spider
before anyone had time to react. Approximately 1100 ft of 7⅝ in. casing
fell 12,000 ft before it stopped. One other point about casing tools is that a
spare elevator-spider combination should be on the rig, in case there is a
problem with the primary tools. There will not be time to order a replace-
ment if one fails in the process of running casing.

6.5.7 Running Casing in the Hole

Running Speed

Running casing is an intense operation; in cases where differential
sticking is likely, it is even more so. There often is the temptation to run it
too fast. But because casing is of a larger diameter than the drill string, the
annular clearance is smaller and the displacement and surge pressures in
the annulus usually are higher than when running a drill string in the hole.
If a formation is fractured during the running process, then the tendency
to differentially stick the casing off bottom is increased, and the chances
of getting a good cement job usually are decreased considerably,
depending on where the fracture occurs. There are formulas for calcu-
lating surge pressures. Almost no one ever uses them. A sure way to get
into trouble running casing is to rely on some dubious value of the frac-
ture pressure from some unknown source and a formula that may or may
not model the actual mud conditions in the hole. The rule of thumb is that
casing should be run in the hole at a slower rate than the drill string.
Another is to observe the delay and rate at which the mud spills over the
bell nipple. If there is a noticeable delay between the rate of displacement
and the mud being displaced from the bore hole, then the casing is being
run too fast for that particular mud. It is mostly a matter of experience and
the known conditions of the specific bore hole. The point here is this: Do
not attempt to run the casing too fast, it is not a race.

Getting to the Bottom

What should we do if the casing will not go to the bottom? When this hap-
pens (and it sometimes does), there is a tough decision to make. Should
we rig up to circulate and try to wash past an obstruction or should we
start out of the hole immediately? There are no firm rules on this, because
there are so many variables. In many places, it is possible to install a cir-
culating head (or top drive) and wash through an obstruction. In other sit-
uations, where differential sticking is prevalent, turning on the pump to
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circulate is the equivalent of saying, “This is where I want to stick my
casing string.” 

One should always decide before starting in the hole what the risks
are and what the decision will be, should something stop the casing from
going to the bottom. It is much easier to make the decision before starting
in the hole than when a problem arises during the running process.

Tagging Bottom

We might also mention the issue of tagging the bottom of the hole with
the casing. Some say that it should not be done, because it can possibly
plug the float shoe or even stick the casing in cuttings or fill on bottom.
There is legitimacy to this line of thinking. Others routinely tag bottom to
verify their pipe measurements. I was schooled in the “do not tag bottom”
discipline and never had a problem, but I have seen a couple of cases
where followers of that mode of thinking set the production casing shoe
above the bottom of the pay zone, and that also can be problematic. In
recent years, it has become common practice when setting liners in level 4
multilaterals (where the upper portion of the cemented liner is washed
over and milled out flush with the junction) to tag bottom as a depth refer-
ence to avoid cementing the liner with a coupling in the window. If a liner
coupling (or any liner connection) is in the window when the liner is
cemented, the coupling or connection will be partially milled in the wash-
over operation. The result is a loose section of milled pipe above the con-
nection as well as a loose, partial coupling in the well bore. Do not make
the foolish assumption that the cement will hold it in place. Laterals have
been lost to reentry in such cases.

Another important point along these lines: We hate to admit that it
happens, but sometimes we find that the casing stops 42 ft from bottom,
or maybe even 83 ft or some such multiple of the pipe range being used.
This sort of thing happens too often, and the embarrassment of having
made a mistake in the tally or joint count is only secondary to the reality
that that it could also end your current employment. Check your records
quickly and make your decision, because the result of trying to wash pipe
to bottom that is already on bottom may only compound your problems.

6.5.8 Highly Deviated Wells
Directional and highly deviated wells pose a special set of conditions.
Bore-hole friction may be quite high, and bore-hole stability problems
may complicate the situation even further. Unlike most nearly vertical
wells, the hook load does not always increase as the casing nears bottom.
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It often decreases as more casing enters the highly deviated portion and
must be pushed in the hole (see Figure 6–4).

Obviously, if the hook load goes to zero, we have nothing more to
push the casing with and the casing goes no further. (A top drive rig
allows us to add additional force, but it may not be enough either.) If it is
not on bottom, then our only hope is to be able to pull it out of the hole.
Will our design allow the casing to be pulled out of the hole with all the
bore-hole friction in this well? It is essential in highly deviated wells to
incorporate bore-hole friction into our design and running procedures. We
discuss bore-hole friction in Chapter 9.

6.6 Landing Practices
There is no standard practice for landing casing after it has been
cemented. It is assumed that the casing is now fixed at the top of the
cement. (The fixed point often is referred to as the freeze point.) The
casing above the freeze point actually can buckle into a spiral or helix due
to its weight, the weight of the fluids inside, or a change in temperature.
Only in rare cases would this buckling actually result in damage to the
casing, but it could cause wear problems in intermediate casing strings
and difficulty in running production equipment in production strings. The
severity of the buckled deformation is limited by the clearance between
the casing and well-bore wall, which normally is relatively small but
could be considerable in a washed out area. We discuss buckling in
Chapter 8.

6.6.1 Common Landing Practices
Four landing procedures are common and were once mentioned as recom-
mended practices in a number of publications (but no longer). Roughly
they are as follows:

1. Land the casing with the same load on the wellhead as the hook 
load after cementing.

2. Land the casing with tension at the top of the cement, which is 
assumed to be the freeze point.

3. Land the casing with the neutral point (axial tension/
compression) at the freeze point.

4. Land the casing with compression at the freeze point.
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You can see that some of those are the opposite of each other (the second
and last), and none are in agreement. Some operating companies that have
selected one of these (with possible variations) are adamant that theirs is
the best method to use. The dilemma with all this is that, once the casing
is on bottom and cemented, we are not really certain what happens down
the hole when we land (or hang) the casing at the surface. In other cases, a
limitation is placed on what the wellhead equipment can support. There is
also the question of the type of hanger used—a slip-type hanger gives us
considerable flexibility (if we can get it down into the casing head prop-
erly) whereas a mandrel-type hanger cannot be adjusted once the pipe is
on bottom or cemented. 

It is generally agreed on by most operators, though, that the casing
should not buckle above the freeze point. This means that the effective
axial load should be in tension if at all possible everywhere above the
freeze point. Do not be misled into using the true axial load, the neutral
point for buckling is the point where the effective axial load is equal to
zero. Anything above that point should have an effective tensile load.
(You learned to calculate the effective load in Chapter 2, so it should be
no problem for you.) If the casing will be heated by circulating or pro-
duced fluids, the heat will expand the casing and reduce the tension, and
possibly put part of the noncemented casing in compression. (Tempera-
ture effects are covered in Chapter 8.) If you use a mandrel-type hanger
instead of a slip type, and in many situations you have no choice, then
there is no way to adjust the axial load above the top of the cement after it
has set. In that case, if possible, design the cementing job such that the

Figure 6–4 Decreasing hook load in highly deviated well.
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cement top is well above the neutral point. You may also be able to rotate
the pipe while cementing or before cementing. This will allow the pipe to
overcome any residual frictional force from going in the hole and work
the neutral point to the shoe (except in horizontal wells). However, before
you elect to rotate the casing, be sure that the torque required for rotation
does not exceed that maximum recommended makeup torque of the
casing connections. It often exceeds the maximum for 8-rd couplings and
non-shouldering-type connections.

One significant problem as far as casing buckling is concerned is hole
washout and bad cement or no cement in the washed out interval. In the
presence of heated circulating fluid or produced fluids, buckling can
occur in this interval. This is not a landing problem but rather a cementing
problem that must be addressed. Along these same lines is the presence of
a stage tool in a casing string. Often a stage tool is used some distance
above the top of the lower stage of cement. This means that an unsup-
ported section of casing is fixed at both ends, and a significant rise in tem-
perature can cause buckling of the casing in that unsupported interval. 

6.6.2 Maximum Hanging Weight
There are limits on the amount of weight that may be hung on a casing
hanger:

• Tensile strength of the casing string.

• Maximum support strength of wellhead and support casing.

• Support rating of the casing hanger.

• Collapse rating of casing when using a slip-type hanger.

The first limitation is a matter of proper casing design, so that if tension
above the string weight is to be applied (e.g., preventing thermal buckling),
the additional tension must be included in the design load. The second item
is a matter of structural integrity of the supporting casings or platform and
is beyond the scope of our discussion. The third item applies primarily to
slip-type hangers, and one needs to refer to the hanger manufacturer’s
rating for the particular hanger to be used. Also, the weight and wellhead
pressures could exceed the rating of the casing head so that the hanger
actually causes the head to expand, but that is rare and most wellhead man-
ufacturers have eliminated those problems from their equipment. The last
item, concerning the collapse load of a slip-type hanger on casing, can be a
serious problem for heavy strings of casing (see Figure 6–5). The weight
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of the casing forces the slip segments downward, which in turn imposes a
radial, compressive force on the casing. Such a force can exceed the col-
lapse resistance of the casing.

A simple formula can be used to estimate the collapse load imposed
by a slip-type casing hanger.

(6.1)

where

Figure 6–5 Slip-type casing hanger.
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To be as consistent as possible, the pressure load from this equation
should be compared to the biaxial collapse pressure rating of the casing.
As to the safety factor, it is a matter of company policy, but a commonly
used safety factor is 2.0.

Example 6–1 Casing Hanger Collapse Load

From our continuing example, the 7 in. production casing has the
following data:

Buoyed casing string weight at surface = 338,000 lbf

Type of 7 in. casing at surface = 29 lb/ft, P-110

Nominal collapse rating = 8530 psi

Hanger taper = 25°
Hanger slip length = 10 in.

Using a safety factor of 2.0, determine if the entire buoyed weight of the
string can be hung on the hanger.

The biaxial collapse rating of the casing with 338,000 lbf tension is
calculated from the formulas of the previous chapter and is 7280 psi:

In this case, the casing may be hung safely with the full buoyed weight on
the hanger without danger of collapse, since the equivalent collapse pres-
sure load is less than the biaxial collapse rating of the casing. Whenever
doing this type of calculation, it is important to know whether the angle of
the slip segments is measured from the horizontal or vertical. If the angle
is measured from the horizontal, it must be subtracted from 90°  before
using in this formula. Also important is to compare to the biaxial collapse
rating of the casing rather than the published nominal collapse rating,
although many assume the safety factor of 2.0 is sufficient to ignore the
combined collapse-tension effect.

phngr
2 lbf/in= ( )( ) =2 0

338000

7 10 25
6592.

tanπ
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6.7 Closure
Running casing is as important as the casing design itself. If the casing is
damaged or does not reach the bottom, the success of the entire well is
jeopardized. We looked at some practical aspects in this chapter, and it is
hoped that these may be of use to the reader. Many more aspects could
have been discussed, but this chapter covers the essence.

This chapter concludes what might be called the basics of casing
design and practices. Essentially, it is presented as a recipe for basic
casing design. Although some of the issues are discussed in detail, little is
said about where the strength values come from and what their limitations
are. The remaining chapters of this text examine the mechanics of casing
in more detail.
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CHAPTER 7

Beyond Basic Casing Design

7.1 Introduction
The first six chapters of this text were written to provide a basic founda-
tion in casing design. They more or less constitute a recipe, if you will, for
basic casing design, which should serve for designing casing strings for
the vast majority of wells drilled in the world. One need not be an engi-
neer to do it successfully, and it is hoped that the preceding chapters were
enlightening to those who are not. Beginning with this chapter, we
abandon the recipe. From here on, we address a number of topics consid-
ered more advanced. The intent is not to try to teach a method for
designing casing for critical wells but to help one understand the princi-
ples involved. More and more, we rely on software to do casing design.
On the one hand, that is good, because it allows us to make sophisticated
calculations and adjustments that take an excessive amount of time if
done manually or that few actually understand how to do in practice. But,
on the other hand, we have people using software to design casing for real
wells who are clueless as to what the software is doing and what the
results mean. This is not an exaggeration. In this chapter, we examine
some of the topics that may fill a few gaps in the education of many petro-
leum engineers in regard to casing design. The purpose here is to impart a
degree of understanding of some of the concepts and terminology for
more advanced topics concerning casing and its use. This chapter begins
with a brief discussion of design and then looks at some of the concepts of
solid mechanics as applied to casing and oil-field tubulars in general. In
later chapters, we discuss specific topics, formulas, and so forth.
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7.2 Structural Design
The design of structures is almost as old as humanity itself. Whether the
first “structures” were for shelter, tools, or weapons, the design process
from its primitive beginnings has been around a long time. Almost every-
thing we see each day is a structure of some sort. Casing also is a structure,
though we may not often think of it in that context. It is a containment
structure for the most part, and the design procedures we use are similar in
many respects to those of more complex structures.

7.2.1 Deterministic and Probabilistic Design
There are two general approaches to designing casing or any type of struc-
ture. One is a deterministic design method, the process with which we are
most familiar. We use published values for the minimum strengths and per-
formance properties of the materials, hypothetical load scenarios based on
observed and hypothetical criteria, and a set of formulas to calculate
structural performance with those loads, then specify the types and sizes of
structural materials required to safely sustain the loads. This is the method
used for the design of most common static structures, such as bridges, sky-
scrapers, television transmission towers, drilling rig masts, and even oil-field
casing strings. The other general approach is a probability-based design
method, in which we use statistical test data for the strengths and properties
of actual materials and probabilistic loading scenarios. This approach often
is used in the design of structures subject to dynamic and cyclic loading such
as airframes, turbine blades, and so forth, where fatigue failure is a signifi-
cant or dominant factor. The probabilistic design criteria in these types of
structures may also be weighted on the consequences of structural failure. In
other words, the critical strengths and loads often are based on things like
risk to human life, property value, the environment, and so forth. An
example would be the blade of a gas turbine operating in some remote oil-
field location as opposed to a jet engine turbine blade on an aircraft flying
human passengers across a continent: in other words, a 0.1% probability of
failure in 10,000 hours of service may be acceptable for the remote oil-field
gas turbine, but that same failure probability in an aircraft engine design
would likely have aircraft falling out of the sky almost daily, and that is not
acceptable. This method also can be applied to static type structures: we see
an example of this in the oil field in the design of pipelines, where the pub-
lished standards for strength often are based on the human population den-
sity in the vicinity of the pipeline. A probability-based design must account
for the consequences of failure in addition to the probability of a failure.
And, to do that, one must have reliable limit data on actual materials or com-
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ponents to work with rather than some limit set by manufacturing standards
that allow considerable tolerance. Obviously, the better data we have, the
better both methods work, but it is especially important in probability-based
design if any significant savings is to be realized. 

7.2.2 Design Limits
One thing we must get very clear in our heads is that, when we design a
casing string (or any other type of structure for that matter), we are not
attempting to predict failure. Predicting actual failure is near impossible,
even when we have the most complete data we can imagine: in the case of
oil-field tubes and bore-hole conditions, predicting failure is impossible.
So our goal is to select some design limits and select our casing such that
the anticipated loads do not exceed those limits. Calculating design limits
and predicting failure are separate and distinct processes. 

A design limit is naturally linked to some strength property of the
structural member, which is a tube in our case. Since we already stated
that we cannot predict actual failure of the tube, there must be some other
property of the tube that we can reliably predict or calculate. The historic
design limit for casing, as well as most structures in the world, is the
elastic yield point: the stress at which a material goes from elastic
behavior to plastic behavior. The elastic yield point or yield stress (some-
times referred to as the yield strength) of a metal such as steel is well
defined and relatively easy to determine experimentally. We can (and do)
go beyond the yield strength in some cases of structural design, but
working within the plastic regime is quite complex and generally avoided
in all but the simplest cases. These usually are cases in which part of the
material body remains elastic and the design limit might be selected as the
point at which the entire body reaches the yield point (or possibly some
point before that state is reached). These design limits typically are one-
time limits and do not consider the effects of cyclical loading (which
changes the yield stress value). An example is the new formula proposed
for ductile rupture of casing, which we discuss in the next chapter. The
only cyclical loading in the plastic regime for oil-field tubulars is in coiled
tubing, and we all know (or should know) that coiled tubing has a very
short service lifespan because of the cyclic loading in the plastic regime. 

7.2.3 Design Comments
It is not likely in the near future that more than a small number of companies
will be doing probability-based casing designs for more than a relatively few
critical wells, as compared to the number of wells drilled in the world each
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year. Those companies doing this work have their own expertise and criteria
for risk, and those criteria cannot necessarily carry over to other companies.
For instance, years ago with the advent of tubingless completions, many
looked at it as a way to save money. If you drilled a lot of these wells, you
could save a sizeable amount of money. To be sure, there were failures, and
the inexpensive wells completed with 2⅜ in. tubing/casing could not be
effectively worked over with the equipment of the day. The larger companies
accepted this risk, and the frequency of failed wells (which were usually
plugged as expendable) was within reason. But, for a small operator that had
only one well or two, a failure sometimes was cause for bankruptcy. That is
not acceptable from the small operator’s perspective. However, that said, the
one benefit of the trend toward probabilistic casing design that every oper-
ator, big or small, has realized is a decided improvement in the design for-
mulas and the ways in which certain variations in casing tolerances can be
measured and accounted for, even in deterministic design. And even what we
call a deterministic design is based on some probabilities of certain critical
loading occurrences and possible failures of casing to meet minimum stan-
dards; the difference is that, in deterministic design, we do not attempt to
quantify those probabilities (see Klever and Tallin, 2005).

One last comment should be made. A common mistake is to think that
a deterministic design gives us a 100% safe structure at a higher cost, and a
probabilistic design gives us a more cost-effective structure but at a slightly
greater risk. While that may be true in some cases, it is not true in general.
In fact, many of the probability-based designs are safer than some deter-
ministic designs. Both methods have their place and applications. 

7.3 Mechanics of Solids
The purpose of this section should be obvious by its title. In the petroleum
engineering discipline, practitioners come from varied technical backgrounds;
consequently, we see in the literature a variety of approaches to the mechanics
of tubulars, some good, some not. One of the things that pervades all engi-
neering disciplines, though, is the tendency to simplify as much as possible at
the early levels. This is understandable. Consequently, as we advance to more
complex considerations, we find that much of what we learned was not only
an oversimplification but often quite misleading. And a big part of that is ter-
minology. What we set out to do in this chapter is to impart a basic under-
standing of the mechanics of solids couched in the terminology of modern
continuum mechanics. Some of what is covered here normally is at a graduate
level for engineers, but the intent is to make it understandable to the under-
graduate engineer, which is not unreasonable to attempt.
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7.3.1 Index Notation
In a previous textbook I coauthored, I was told that it is verboten to
explain index notation to undergraduates. I think this is nonsense. It takes
only a few minutes to understand the basics of index notation for small
deformations in Cartesian coordinate systems, and after a little practice
and familiarity, one would wonder why this was never taught sooner. It
greatly simplifies the appearance of the equations of mechanics and, I
believe, enhances understanding. Index notation is simply this: Coordi-
nates are numbered and noted with subscripts. That is it! That is the whole
idea! It was invented by Einstein to make life easier in dealing with the
geometric analogy of general relativity.5 We use a much more modest ver-
sion though.

Coordinates

Before we explain index notation, we need a coordinate system, because
index notation always refers to a specific coordinate system. Figure 7–1
illustrates a Cartesian coordinate system similar to the one we employed
in Chapter 2. Note, however, that the coordinate axes are no longer
labeled x, y, z, but x1, x2, x3. We just as easily could have labeled them y1,
y2, y3; z1, z2, z3; ; or even X1, X2, X3. In this notation, the letters, x,
x', and X refer to specific coordinate systems, and we may have as many
or as few as we need for a specific use (typically, we seldom need more
than two). The numbered subscripts, 1, 2, and 3, refer to the three axes of
those specific coordinate systems.

Once we have the coordinate system established, we can refer to a
point in that coordinate system. So, instead of referring to a point by its
three coordinates, x1, x2, x3, we can simply refer to the point as

xi where i = 1, 2, 3

The letter index is assumed to include all three axes, so it is not necessary
to write out the range of the index, i, except in cases where other sub-
scripts might cause confusion.

We used a Cartesian coordinate system as an example, but we are not
limited to Cartesian coordinates. For instance in a circular cylindrical

5. In some coordinate systems, the axes are not orthogonal. There, we must use 
both superscript and subscript indices. But we are not going to concern our-
selves with that degree of complexity here. See Simmonds (1982) for a good 
foundation level book on vectors and tensors.

′ ′ ′x x x1 2 3, ,
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coordinate system we may still number the axes as 1, 2, 3, instead of
. The only thing we have to be careful about in other coordinate

systems is the physical meaning of some of the quantities, but we do not
concern ourselves with that for now.

Conventions of Index Notation

The power of the index notation is not merely the handy way to note coor-
dinates, but in additional conventions that greatly reduce the amount of
writing we have to do. We cover some of those now.

Summation Convention

Any index repeated in a product or quotient is automatically summed over
its entire range. For example,

In the summation convention, a nonrepeated index is called a free index,
and the repeated index is called a dummy index. In the example, i is a free
index, and j is a dummy index.

Figure 7–1 A Cartesian coordinate system.

x1

x3

x2

r z, ,θ

a x c a x c iij j i ij j i
j

= → = =
=

∑
1

3

1 2 3, ,
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Range Convention

Any free (not repeated) index is implied to take on all possible values of
its range. For example,

Nuances

The dummy index may be changed without affecting the meaning. The
following is acceptable because changing the dummy index does not
change the meaning, since it only implies a sum over the range:

The free index may not be changed within an equation, unless we change
all occurrences of that particular index. For example,

The two equations are equivalent but the following is not:

because the free index is not consistent on both sides. A repeated index on
a single variable is called a contraction:

a x c

a x a x a x c

a x a x a x c

a x a
ij j i= →

+ + =
+ + =
+

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 xx a x c2 33 3 3+ =

a x a xij j ik k=

a x c a x cij j i kj j k= ↔ =

a x a xij j kj j≠

a a a aii = + +11 22 33
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A dummy index can be repeated only once in a product or quotient. The
following are meaningless:

We might think of indexed quantities as matrices, although that is not nec-
essarily the purpose. Two examples follow:

When thinking in terms of matrix algebra, the first index is the row
number and the second is the column number. (Caution: While this is the
most common practice, some use the opposite convention:)

In index notation, it makes no difference whether we write

but it does make a difference as to the order of the indices; for instance, in
general,

Partial Derivatives

Partial derivatives with respect to a spatial coordinate occur frequently in
solid mechanics, and index notation allows for a shortcut in notation by
using a comma to denote partial differentiation.
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We also can use summations in derivatives; for instance,

And, even more,
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It becomes readily apparent that index notation can save a lot of space and
effort. It is not necessary to write out such long expressions, and it also
lends itself well to computer algorithms.

Special Symbols

Some symbols in index notation have special meaning. These are handy
tools that we use later.

The Kronecker delta symbol is used time and again. It takes on values
of either 1 or zero:

The permutation symbol is used primarily for cross products and
determinates:

It takes on values of 0, 1, or –1, depending on the values of the indices:

To better understand what is meant by even and odd permutations, think
of a triangle with the vertices numbered sequentially 1, 2, 3 in a clockwise
direction. If one starts at any of the three vertices and proceeds around the
triangle in a clockwise direction the sequence of numbers is an even per-
mutation. If one goes around the triangle in a counterclockwise direction
then the sequence of numbers is an odd permutation. This is illustrated in
Figure 7–2.

This is enough to get us started. We will add to this as needed in con-
text of certain applications. The important things to remember for now are
the ideas of the indices and the summation convention.

δij

i j

i j
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7.3.2 Coordinate Systems
In the previous section, we mentioned coordinate systems in relation to
indices. Now, we need to address a little more about coordinate systems
and the transforms necessary to transform quantities in one coordinate
system to another. For instance, a vector, such as a displacement u, is
independent of any coordinate system. The conventional way of writing a
displacement vector is , another way is u. The first is used when we are
writing by hand, since we do not have a boldface font, and the second
convention is used when we are typing it in print, where we do have the
capability of using boldface fonts. In either case, this is a vector or
directed line segment with both a direction and magnitude, and as written,
it is independent of any coordinate system. Once we select a coordinate
system and write it in index notation as ui, we are essentially now refer-
ring to the three components of a vector, and those components are not
independent of a coordinate system. The numerical values of the compo-
nents depend on our choice of coordinate system. Again, it is the same
vector no matter what coordinate system we select, but the numerical
values of its components depend on the particular coordinate system. It
could be said that mathematicians generally prefer to work with direct
notation, such as , which is coordinate independent, because they
are seldom concerned about actual values, but engineers prefer to work
with index notation, such as ui = , which refers to a specific coordi-
nate system, because they are concerned about the numerical values and
directions.

Coordinate systems have a set of vectors called the basis vectors. In
simple terms, basis vectors point in the directions of the coordinate axes.
The basis vectors are linearly independent, meaning that they are not
made up of linear combinations of each other. That is to say, we cannot
add two basis vectors or scalar multiples of each other in any combination
to get the third. The most common coordinate system used in solid
mechanics is a Cartesian coordinate system of three orthogonal axes,

       

Figure 7–2 Even and odd permutations.
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meaning they all are perpendicular to each other. For a Cartesian coordi-
nate system, it is common to label a standard set of unit basis vectors as

or, another way of putting it is

The magnitude of a unit basis vector is, of course, unity:

The magnitude of a vector is calculated by taking the square root of the
sum of the squares of its components; for example, for the basis vector e1,
its magnitude is given by

Any vector, u for instance, can be written in terms of its components and
Cartesian base vectors:

Note the summation convention over all three components. The magni-
tude (or length) of the vector u is defined like before as

Note that the superscripts denote the component is squared, while the sub-
script is the index number. To avoid confusion, it is sometimes customary
to enclose the component in parentheses and place the superscript on the

e e e31 2, ,{ }

e e e1 2 31 0 0 0 1 0 0 0 1∼ ∼ ∼( , , ), ( , , ), ( , , )

ei = 1

e1
2 2 21 0 0 1≡ + + =

u e e e e= = + +u u u ui i 1 1 2 2 3 3

u ≡ + +u u u1
2

2
2

3
2
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outside as, (u1)
2. If we wanted to convert u into a unit vector, we would do

so by dividing each of its components by its magnitude:

A unit vector can be thought of simply as a direction. 
We can add two vectors by adding their respective components:

We also can multiply a vector by a scalar. A scalar may be thought of as
simply a number. Examples of scalars are temperature, time, energy,
work, density, to name just a few. If  is a scalar, then

It is important to note that scalars are not constants and their values may
depend on their location within a coordinate system. For example, tem-
perature may be a function of its position in a coordinate system, in other
words its magnitude may depend on its location, but it does not have a
direction. Partial derivatives of scalars with respect to the coordinates are
no longer scalars but are vectors. An example is a temperature gradient Ti,
which is a vector.

Before we go further, there are some things we need to say about vec-
tors. When we said the basis set was linearly independent, that implies a
couple of important things. First,
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That means that a vector, u, is equal to zero if and only if all its compo-
nents are zero. The double ended arrow above means iff (mathematical
shorthand for if and only if). Another consequence of the linear indepen-
dence is the dot product of the basis vectors:

The dot product then is the product of the magnitudes (in this case 1)
times the cosine of the angle between the two vectors. It is easy to see
that, for a Cartesian coordinate system, the angle between the three base
vectors is 90° , hence, the cosine is always 0 unless the two vectors are the
same vector, in which case the angle between them is 0°  and the cosine is
1. An example of the dot product between two vectors in a Cartesian coor-
dinate system would work like this:

The properties of the Kronecker delta are seen in this dot product. The
physical significance of a dot product in continuum mechanics is that it
transforms two vectors into a scalar quantity. For example, the dot product
of a force vector with a distance vector results in a scalar quantity called
work. A scalar has magnitude but no direction. We might think of a dot
product of a vector being a linear transformation that transforms a vector
into a scalar, as in a force transforms a distance into work. 

One other product that we might have occasion to use is the cross
product. The cross product between two basis vectors is given by
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In the cross product, we use he permutation operator. The result is a
vector perpendicular to the two base vectors in the cross product. Let us
see how this works with two general vectors:

Note that this contains all three even permutations and all three odd per-
mutations. The use of the permutation operator made this a lot shorter
than had we included all the terms whose cross products are zero. The
resulting vector is perpendicular to the two vectors in the cross product. If
we reverse the order of the cross product, the resulting vector is still per-
pendicular to the two but in the opposite direction:

The cross product transforms a vector into another vector. An example
would be that the cross product with a force vector transforms a distance
vector into a torque vector. Note that work (the result of the dot product of
force and distance) is a scalar, but torque (the result of the cross product
of force and distance) is a vector even though they both have the same
physical units, lbf · ft or N · m.

7.3.3 The Continuum
All matter and perhaps even space itself is composed of particles (or
strings) that are discontinuous. This is fine for physicists studying things
small, but it is not very useful for modeling the behavior of things such as
derricks, drilling fluids, casing, and so forth. In other words, we need a
different approach for modeling the things of everyday life to make them
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mathematically tenable. We do this by assuming the existence of a con-
tinuum. What we mean is that the materials and bodies we work with are
continuous to what ever scale we need apply. While it may not seem
important for now, we can say that all quantities in which we are inter-
ested are continuously differentiable to any extent we require at any point
within the body. We also assume that Newtonian mechanics apply and
inertial reference frames are available so that the laws of nature are not
violated. That is all a bit of formality that we need not worry about for oil-
field casing, but you should know that there are limitations to our assump-
tions on some scales and at some speeds.

In Newtonian mechanics, we work in a vector space that consists of
three spatial dimensions called a Euclidian space, E3, and a real line, R,
called the time line. The letter R stands for all real numbers, in other
words scalars like time, and we assume that time is always increasing
along this line of real numbers. This vector space may be formally repre-
sented as E3 × R. This is a special case or a limiting case of general
relativity.

That is enough background in continuum mechanics for now. 

Deformation and Strain

All real materials are deformable. It is perfectly appropriate in many cases
to assume that certain things behave as rigid bodies and do not deform,
since in many cases we are not interested in deformation or the magnitude
of deformation does not affect our observations or calculations. An
example would be picking a casing string up off bottom in a well to recip-
rocate the pipe while cementing. When we first begin to pull on the pipe,
it is stretching. The top is moving, but the casing shoe is not. Once we pull
a certain amount, the entire string is moving. If we are trying to determine
the maximum load to reciprocate the pipe, then we are not interested in
the load as the pipe is stretching before the entire string is moving. We are
interested only in the load due to gravity and friction when the entire
string is moving. This is a rigid body motion and the deformation or
stretch in the pipe has no significance in this context. A rigid body motion
may be a translation and/or a rotation in space. A body moves from one
position to another without deformation. A rotary table rotates while
drilling, and that is a rigid body motion for most applications. Certainly,
there is some small amount of deformation in the individual parts, but that
is of no interest if we are interested in penetration rate as a function of
rotary speed. If we are interested in bit speed as a function of rotary speed,
however, we might consider the deformation of the drill pipe in torsion as
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a possible fluctuating variable. If we are interested in the collapse pres-
sure of a casing string, the collapse value is based on a deformation of the
casing.

Deformation by itself is meaningless. For instance, if our casing
string is stuck, we pick up on it to try to free it, and we pull maybe 6 ft or
2 m through the rotary table. Is that significant? We cannot answer such
an important question with only the amount of information given. If it is
stuck at a depth of 10,000 ft, then a 6 ft or 2 m stretch is not very much.
But, if the pipe rams in the BOP are closed on top of a coupling unbe-
knownst to us, then 6 ft of deformation is quite significant. So, what we
need is a measure that gives us some idea of how significant the deforma-
tion is. We could divide the stretch by the original length to give us a mea-
sure. In the first case, 6 divided by 10,000 gives us a measure of 0.0006 or
0.06%. For the second case, assuming the pipe rams are 15 ft below the
rotary table, we would have a value of 0.40 or 40%. Now, we know how
serious the stretch is. In the second case, we know that the pipe would
have long since parted, and of course, we would have already known that
had happened. The 6 ft “stretch” in that case would have been an observa-
tion made after everyone stopped running and returned to the rig floor.

One way to measure deformation, then, is simply the stretch divided
by the original length. That is a simple measure of strain and quite useful
at low values for uniaxial deformations. However, if we were to measure
the wall thickness of the pipe very accurately, we also would find that, as
the pipe stretched and got longer, the wall thickness decreased slightly. A
simple definition of strain is

(7.1)

where ui is the deformation in one of the three axis directions. This defini-
tion of strain, called the Cauchy infinitesimal strain, is the measure most
commonly used. Suppose, for our pipe example, the x3 coordinate is ver-
tical and downward and the pipe is weightless, so that the strain is uni-
form along the entire length of the tube, that is, du/dx3 is a constant all
along the length of the pipe, then
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This is fairly straightforward, but note that there are a total of nine strain
components instead of one, and the others may not be zero. In fact, not all
will be zero. Because, as we said, when we stretch the pipe in one direc-
tion, there is a change in the other dimensions as well. Those other
changes may be insignificant or they may not. In addition to the strain
definition given by equation (7.1), the Cauchy infinitesimal strain, there
are other definitions of strain. We save those for later. The strain may be
written as a matrix:

Larger Deformations

We are not going to cover large deformations in this text, but we should
mention a few things that are important. Most all of the engineering prob-
lems we solve are based on small deformations and infinitesimal strains.
The world gets a lot more complicated when we consider finite or large
deformations and finite or large strains. For instance, look at Figure 7–3.
Here, we see a simple cantilevered beam with a single load at the end. The
common solution to this problem is based on very small deformations of
the beam, such that the end load is always perpendicular to the beam and
the length does not change significantly enough to affect our calculations.
This is a one-dimensional problem, and it is easy to solve for the displace-
ments of the beam. 

What if we were to make the load on the beam such that the beam is
deformed further, as in Figure 7–4? We now see that the direction of the
end load is still in the vertical direction, but part of the beam is no longer
horizontal. In this case, we see that the loading now has components of
force along the axis of the beam as well as transverse to the beam. So, in
addition to the vertical deformation, there is also a longitudinal deforma-
tion. Furthermore, the axis of the beam no longer coincides with the x-
axis of our coordinate system. In this case, there is a finite deformation
and our strain measure begins to take on a different meaning. 

Look at another illustration. Suppose we take a bar as in the next figure,
Figure 7–5(a) and stretch it in the X1-direction by a fraction of its original
length, say 0.05. We might say that the strain in the bar is . But
what if, in addition to stretching the bar by the same amount, we also rotate it
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Figure 7–3 Small defection of beam.

Figure 7–4 Large defection of beam.

Figure 7–5 Large uniaxial strain: (a) original position, (b) final position.
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90°  as in Figure 7–5(b)? Now, what is the axial strain in the bar? Is it
? Or is it ? It is obvious that the strain is now in the

X3-direction, so can we say that the latter is the correct measure of strain?
What if we cause the strain before we rotate it? Or what if we are stretching
the bar as we rotate it? So the question is this: If the bar has moved in respect
to the coordinates as well as having been deformed, then how do we account
for this and still make sense of it? There are several ways to do this. One way
is to take the strain with respect to coordinates in the undeformed configura-
tion: another way is to take the strain with respect to a set coordinates in the
deformed configuration. So here are two more ways to define strain: 

(7.2)

(7.3)

The first of these strain measures is called the Lagrangian strain. The par-
tial derivatives are taken with respect to the undeformed coordinates, Xi;
and the second strain measure is called the Eulerian strain, where the par-
tial derivatives are taken with respect to the deformed coordinates, xi. We
can even have a coordinate system that deforms with the body itself and
define the strain in that deformed coordinate system, whose axes are no
longer straight but curved as the body is deformed. There are many ways
to measure strain.

The subject of finite and large deformations can get as complicated as
you can possibly imagine. For instance, if we were to try to model the
inflation of a large balloon, it is one thing to start out with the initial con-
figuration of the balloon in a partially inflated state and continue the infla-
tion process until its diameter has grown to twice its initial dimension. It
is quite another to start out with the balloon folded in an open box as the
initial configuration when we begin the inflation process. The point of
mentioning large deformations is not to confuse you, but to help you
understand the assumptions we make in using small strains. And the
reason this is necessary is that it is not uncommon to see small strain
assumptions “stretched” beyond their limitations in a number of applica-
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tions. It is important that this is thoroughly implanted into your thinking,
so that whenever you encounter applications involving casing deforma-
tion, for instance, you are aware of the limitations of small strain assump-
tions. The reason we tend to adopt simplifying assumptions so readily is
because those are the only problems we know how to solve easily. But
there are many times when these assumptions are adopted inappropriately
simply because one does not know any better, and that is dangerous.
Equation (7.1) is the equation for infinitesimal strain only.

Stress

Our early concept of stress was most likely that it is a “distributed load” as
opposed to a “point load.” That is all right for many simple engineering
calculations, but it is quite misleading when we advance to more compli-
cated problems. First of all, we need to recognize that, in the real world,
there is no such thing as a point load. A point load is a mathematical con-
venience that exists only in theory and calculations. All real loads are dis-
tributed loads. Think about it this way; if we could apply a true point load
of 100 lbf to the surface of a steel block, what would happen? If it is truly a
point load, the contact area shrinks to zero, the pressure exerted by the load
goes to infinity, and the steel block fails at the point of contact. Of course,
this does not happen in the real world, because the contact area is not zero,
so the load actually is distributed over some area, even though it may be
very small. So, even though true point loads do not exist, we use them in
our calculations for convenience. Now, back to the distributed load, is a
distributed load we typically measure in lbf/in.2 or Pa a stress? No, it is not.
Just because it has the same units of stress does not make it a stress. 

What is a distributed load then? Unfortunately, some call it a stress
vector. This is a bit of sloppy terminology that has been used for so long it
has taken root. If you want to use that term, you have plenty of company,
but it can be confusing to call two totally different things stress. A distrib-
uted load is a vector, it has magnitude and direction, but stress is never a
vector. The proper name for a distributed load is a traction or traction
vector, and it is a directional load (force) distributed over some area of con-
tact. Something else worth noting is that you cannot apply stress. You can
apply only traction; stress is a result of the traction. But, most important,
remember that stress itself is never a vector. Here is an example to illustrate
why it is not. Suppose we have a bar in a Cartesian coordinate system (see
Figure 7–6) and we apply a traction (distributed load) to the end of the bar
of, say, 100 lbf/in.2 (or 100 Pa, take your pick) in the x1-direction; that is,
F1 = 100, (F2 = F3 = 0). We assume that the bar is weightless to keep things
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simple, and we can intuitively say something like, “the stress in the bar is
obviously also 100 (lbf/in.2 or Pa).” And that is true; it is a uniaxial stress in
the “x1-direction” in our coordinate system; that is, .

A block of material at some location in the bar obviously has stress
components of , . These are principal stress com-
ponents, and there are no shear components. Even though we have not
shown an x3-coordinate, we include it to illustrate the transformation of
vectors and tensors from one coordinate system to another. Now, suppose
we change the coordinate system to look at things in a different frame of
reference. Figure 7–7 shows the new coordinate system, which is rotated
some angle, 30° , counterclockwise from the original coordinate system.

In this new coordinate system, which we call the  coordinate
system, we may express the traction vector as

This is a simple vector transformation from one Cartesian coordinate
system to another. We could have written it more formally as  

Now what about the stress in the bar? Can we transform the uniaxial
stress component just as we did the traction vector to give the new stress
components on a block of material in our new coordinate system? After
all, it is measured in lbf/in.2 or Pa and it has only one direction; isn’t it just
like a vector? In other words, can we now say
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Figure 7–6 A simple traction and uniaxial stress.

Figure 7–7 A 30° coordinate rotation.
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Absolutely not! Even though the stress field has only a single component
in that original coordinate system, it does not transform as a vector because
it is not a vector, it is a second-order tensor. Here is the transform of the
stress field done properly:

You can see now that the stress components in the new coordinate system are:

This is nothing at all like a vector. For this reason, we should never use
terminology that confuses stress with vector quantities. If you are not
familiar with these coordinate transforms, it is not necessary that you
learn it to understand this section. Essentially, the transformation of a
vector goes like this:
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which is exactly what we did when we transformed the traction vector.
The components of the transformation  are equal to the cosine of the
angles between the coordinates of one coordinate system with the other.
For example,  is the cosine of the angle between x1 and , which is
θ = 30 in this case, and  is the cosine of the angle between x1 and ,
which is , but rather than add angles, it is easier to just use

 so that  is used instead. Now, a second-order
tensor transforms as

where the primes have been omitted as being understood to be on the i
and j subscripts. If you are interested, the references at the end of the
chapter provide detailed explanation. 

We might also mention that the actual stress at a point in a material
does not depend on our selection of any particular coordinate system,
even though its component values depend on which coordinate system we
select. In the previous example, we saw that the individual stress compo-
nents have differing values in different coordinate systems, but the actual
stress at that point in the material is not changed by our selection of coor-
dinate systems. When we refer to the stress at a number of points, we typ-
ically refer to a stress field (like we refer to a magnetic field).

It is not completely obvious from our example, but the stress tensor is
symmetric, in that . This is true except in the case of body
moments (such as a magnetic field), which do not appear in our consider-
ations. One way to check your work when you transform a symmetric
tensor, such as stress, is that it always is symmetric in any orthogonal
coordinate system. 

We said that stress is a tensor. What is a tensor? That is a good question
for which there is not a good answer. Or at least, there is no good answer
that would ever satisfy an engineer. A tensor is a mathematical quantity that
transforms according to certain rules (which were illustrated previously, but
we lack space to explain here). Also, when we speak of a tensor, we typi-
cally are talking about a second-order tensor, such as stress or strain. There
are other tensors of different orders as well. Table 7–1 shows some.

By these definitions, even a scalar is a tensor (of zero order), a vector is a
tensor (of first order), so you can see that we have even become a bit sloppy
when we commonly use the term tensor to mean a second-order tensor.
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One final point before we move on. It is misleading to assume that we
can always determine a uniaxial stress by dividing a uniaxial load by the
cross-sectional area of the material body. This is true only for a prismatic
bar, that is, one with a constant cross section, but it is not true near the ends
of the bar, where the loads are applied. We cannot determine the axial
stress in a tube under a thread cut into the tube by dividing the axial load by
the cross-sectional area under the thread. Likewise, we cannot calculate the
uniaxial stress in a coupling, connection, or upset in a tube in a similar
fashion. Whenever the cross-sectional area of a tube changes, the stress
field at the change and in the near vicinity of the change is more compli-
cated than a single uniaxial component. In the case of a connection, addi-
tional complication comes from the addition of tangential, radial, and shear
stress components due to the connection itself. Saint-Venant’s principle,
however, effectively states that, at some distance away from the ends of a
long tube (or point of change in diameter), the stress field becomes
uniaxial, and there we are safe in dividing the cross-sectional area by the
axial load to get the uniaxial stress component. For all practical purposes,
that distance is relatively short in oil-field casing, but in a strict interpreta-
tion of the theory, it is valid only for tubes of infinite length.

Table 7–1 Example Tensors of Different Orders

Tensor Order Common Name Some Examples

0 Scalar Distance, s

Temperature, T

Speed,

Bank balance, $

1 Vector Force, fi

Velocity, vi

Acceleration,

Traction, ti

2 Tensor Stress,

Strain, 

3 — Permutation operator, ∈ijk

4 — Elastic constant, Cijkl

�s

�vi

σ ij

εij
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Stress Invariants

Some things about a stress tensor are invariant no matter how we may
rotate our coordinate system. These are called stress invariants, and three
are associated with a symmetric stress tensor:

(7.4)

You might well ask, of what use are those three invariants other than to
check my arithmetic? There are a number of times when those are useful,
but one use that is of importance is to find the three principal stresses. We
can expand the determinant in the following equation to get a cubic equa-
tion, from which we can solve for the three principal stress components:

(7.5)

where  is a principal stress component and  is the Kronecker delta.
If we go to the trouble to expand that determinant, we get a characteristic
equation whose coefficients are the three stress invariants:

(7.6)

When the stress tensor is symmetric, that cubic equation has three real
roots, which are the three principal stress components. Also, any cubic
equation always has a closed form solution, meaning there is a formula we
can use to find the three principal stress components. To throw in a couple
of other terms here, we can say that, from equation (7.5),  (without
indices) represents an eigenvalue whose three solutions (eigenvalues) in
this equation are the numerical values of the three principal stress compo-
nents. Their directions (which must be determined by other methods) are
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eigenvectors. If that makes sense to you, fine; if not, do not worry about it
because we are not going to use those terms. (Refer to any text on linear
algebra or one of the mechanics references at the end of this chapter if you
want to learn more.)

Deviatoric Stress

To understand a yield stress and plastic material behavior, it is necessary
to learn about one other type of stress, the deviatoric stress. The stress
tensor may be decomposed into a spherical (or hydrostatic) stress and a
deviatoric stress. The spherical stress is that part of the stress tensor that is
basically equal in all directions, that is, just like hydrostatic pressure. The
deviatoric stress is what is left after the spherical stress is taken out. One
way of thinking about it is that the spherical stress might be said to be the
part of the stress tensor trying to compress a material body (or pull it
apart) uniformly in all directions and the deviatoric part of the stress is
what attempts to distort its shape.

In terms of the three principal stresses the spherical stress is

(7.7)

We could then calculate the three principal deviatoric stress components
by subtracting the spherical stress from each principal stress component:

(7.8)

If we do not have the principal stress components, we can calculate the
deviatoric stress from the stress tensor components as
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(7.9)

There are several things to note here. The off-diagonal components of the
deviatoric stress tensor are the same as the regular stress tensor. The only
components that are changed are the ones on the diagonal. Each of those
has subtracted from it one third of the sum of the diagonal components,
which is . Now, the deviatoric stress also has invariants, and one of
these is extremely important: 

(7.10)

Rather than use the same notation as the regular stress invariants, it is cus-
tomary to define these deviatoric invariants as follows:

(7.11)

The important invariant here is J2, which we use later when we discuss
yield stress. And, like before, we can use these invariants to find the three
principal deviatoric stress components by solving the cubic equation:

(7.12)
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This is similar to equation (7.6) except for that J1 is zero and does not
appear. We also show an example of the deviatoric stress when we talk
about yield stress.

7.3.4 Sign Convention
Perhaps it is a bit remiss to leave this until the end of the section on con-
tinuum mechanics, but it is quite important. We showed no derivations of
much of what was discussed in this section; otherwise, it would be
apparent that tensile stress is positive in sign and compressive stress is
negative. That is hardly worth mentioning, except that hydrostatic pres-
sure actually is a negative stress, and we are not accustomed to thinking of
it that way. Pressure is so universally accepted as a positive quantity that,
most of the time, there is a builtin “workaround” just to accommodate that
convention, such as  as in  In rock mechanics, an oppo-
site sign convention is convenient, since most of the rocks in the earth’s
crust are in compression, and putting a negative sign in front of every
stress value could be a significant nuisance. That is well and good, and
you may be wondering what difference it makes as long as we understand
what convention we are using. Well, it does make a difference when you
get deeper into the computational aspects of mechanics. If you take that
all the way back to the basic kinematics of continuum mechanics, you
will find that an opposite sign convention leads to motion in the opposite
direction from the arrow on a velocity vector, for instance. It is one thing
to assume an opposite sign convention in simple calculations but quite
another to assume that motion is in the opposite direction of velocity vec-
tors. When it comes to serious computation, almost no one uses odd sign
conventions. Tension is positive, compression is negative.

7.4 Material Behavior
Suppose we have a solid cube of some material that measures 1 m on each
edge, and it is lying on a flat surface. We know the weight of the cube. We
apply a downward force of a known magnitude on top of that object. If we
are asked, “What is the force on the flat surface?” we have an easy
problem. It is Newton’s third law, and the answer is the force on the surface
is the weight of the cube plus the force we applied to the top of the cube. If
we approach it slightly differently, and instead of measuring the force we
apply on top, we measure how much we actually compress that cube verti-
cally, by say 0.2% of its original height (see Figure 7–8). We now have a
different problem in determining the resultant force on the flat surface. 

−p ijδ σ δij ijp= −
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We know that it is equal to the weight of the cube plus whatever force
is necessary to compress the cube by 0.2%. To solve this problem, we
need to know something about the material of which the cube is made,
and more specifically, how the material responds to a compressive load.
Such a relationship is called a constitutive equation, and in this case, it is a
simple one-dimensional version of Hooke’s law:

This simple relationship relates a load (stress), to a deformation gradient
(strain), by means of a constant, Young’s modulus, which is a property of
the material. Many constitutive relationships are in every day use,
although we do not often think of them as such. Here are two more one-
dimensional examples.

The first is Fourier’s law of heat conduction, which relates heat flux to a
temperature gradient by means of a material property, the conductivity.

Figure 7–8 Force and reaction.
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The second is the Darcy flow, which relates fluid flux to a pressure gra-
dient with two material properties, permeability and viscosity. 

There are many types of material behavior, for example, elastic,
plastic, viscoelastic, viscoplastic. Elastic behavior could be subdivided
into linear elastic, nonlinear elastic, hyperelastic, and viscoelastic. If one
were to apply a load to a material and plot the load curve (load versus
deformation) such as a stress-strain curve, one could not really understand
much about a material’s behavior. Only when the load is removed can we
begin to understand its behavior. For example, look at the material load
curve in Figure 7–9. What type of behavior is this? We might be tempted
to say it is elastic-plastic, since it looks like what we often see to illustrate
how a metal behaves elastically up to a yield point and then becomes
plastic beyond the yield point. But, in truth, all we can say for this
example without more information is that its behavior is nonlinear.

Now let us reveal the unloading behavior on that same material,
Figure 7–10. We see that it returns to the same point where we started. So,
when the load is removed, it has no permanent deformation. It is elastic.

Figure 7–9 Nonlinear material behavior.

Figure 7–10 Nonlinear loading and unloading curve.
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The defining criteria for elastic behavior is that, if a body is subjected
to a load and the load is later removed, it will return to its original state.
But we notice something else about this material load curve. It did not
return by the same path with which it was loaded. What could explain
that? Time. It is a rate-dependent behavior; in other words, it is vis-
coelastic. The shape of this load curve depends on the loading and
unloading rate. The loading and unloading curve does not tell us the rate
at which the load was applied or removed. For example, we could load the
same material very slowly and remove the load, also very slowly. We
might get a loading and unloading curve that would look like
Figure 7–11. If we were not aware of the previous curves, we might think
it is a linear elastic material. And, it is, albeit at very slow rates of loading.
Many materials that we might consider linear elastic actually are rate-
dependent materials. Formation rock in most wells is an example.

Appearances can be deceiving. We are not going to concern ourselves
with rate-dependent materials here, but the point is important, do not
jump to conclusions that are not justified.

7.4.1 Elasticity
We said that an elastic material is one in which the material returns to its
original state after an applied load is removed. A linear elastic material6 is
one whose loading path and unloading path are the same straight line. The
constitutive behavior of a linear elastic material is modeled by Hooke’s law,

Figure 7–11 Slow loading and unloading of a rate-dependent material. Linear 
elastic?

6. We should note that, when we refer to an elastic material, we are speaking to 
only a particular range of a particular material’s behavior. Materials may exhibit 
different types of behavior in certain load ranges.
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as mentioned before. It is called a law, but it is not a law of physics or nature.
It is just a convenient relationship that models the behavior of certain mate-
rials in a very limited range of deformation. We might even say that we are
very fortunate that it does, even though its range is quite small, because
almost every structure or machine we come into contact with daily is
designed using this constitutive relationship. Written in three-dimensional
tensor form it is

(7.13)

If we were to write that out in matrix form, the stress and strain tensors
would each contain 9 terms and the elastic modulus would contain 81
terms. Without considering body moments, all of them are symmetric. For
an isotropic material, one whose material properties are the same in all
directions, equation (7.13) can be simplified considerably. We can use a
contracted notation (called Voigt notation) and write the stress and strain
in vector form and the elastic modulus as a 6 × 6 matrix, and even include
the thermoelastic terms:

(7.14)
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where we have now included Poisson’s ratio, v, and the coefficient of
thermal expansion, . This is a bit more complicated than the simple
one-dimensional form, but often a number of simplifying assumptions,
such as plane strain or plane stress, can be adopted to reduce it to two
dimensions for some problems. We are not going to use this constitutive
relationship, but merely show it so that you can see what it looks like.

7.4.2 Plasticity
We defined an elastic material as one in which, when an applied load is
removed, the material goes back to its original state. A material is said to
behave plastically when an applied load is removed and it does not go
back to its original state. In other words, it has undergone some perma-
nent deformation in the loading process. Plasticity is a complex topic and
there are exceptions to just about everything, but we are concerned prima-
rily with steel in casing here, so we are going to confine our discussion to
that limited scope. Steel behaves more or less as a linear elastic material
up to a point, called the yield point. When loaded beyond that point, its
behavior is said to be plastic, but the elasticity has not disappeared, it is
still exhibited when the loads are removed. Figure 7–12 shows a load
curve for elastic-plastic behavior.

The loading in this curve is such that the sample is linear elastic up to
its yield point, Y, then deforms plastically until the load is removed, at
which time, it unloads elastically. The difference between the initial strain
(zero here) and the final strain is the permanent deformation of the mate-
rial in a plastic mode. It is of significance at this time to make mental note
of this elastic unloading. When a metal, such as steel, is deformed plasti-
cally to a certain size or shape, it will always display some amount of
elastic “rebound” or deformation when the load is removed. When coiled
tubing is bent plastically onto a reel, a lot of elastic energy is stored on
that reel, and if you were to release the end of the tube, you would witness
an amount of elastic unloading you might not otherwise imagine.

In many cases, the behavior of the metal at the yield point is some-
what more complicated than that in Figure 7–12. Sometimes the elastic
behavior becomes nonlinear before the yield stress is reached, and that
point is called the proportional limit. Ductile steels often exhibit this
behavior and materials like cast iron seldom exhibit a distinctive yield
point. There are other cases where the stress actually decreases slightly
after the yield stress is reached; hence, there is an upper yield stress and a
lower yield stress. This is typical of some steel alloys. In many cases, the
yield point is indistinct on a stress-strain chart, so the yield point is

α



236 Chapter 7—Beyond Basic Casing Design

defined as some arbitrary point offset from the proportional limit by a
specified amount of strain (API does this). We do not concern ourselves
with those details, but rather assume that, as long as we do not exceed the
published yield stress for the casing material, its behavior is linear and
elastic to that point.

What happens if we continue to load the sample? Figure 7–13 shows
the uniaxial loading of a sample all the way to failure. At this point, we
need to explain a few things. First of all, in this figure, we are looking at a
uniaxial load curve. It is plotted as stress versus strain, which we already
discussed but we need to understand a bit more.

The samples of material used in these tests are relatively small com-
pared to the massive machine in which they are tested. The samples usu-
ally look like the one shown in Figure 7–14, sometimes colloquially
referred to as a dog bone sample. The sample is placed in a large machine
that pulls it in tension, as the load and stretch are recorded.

Figure 7–12 Elastic-plastic behavior of steel with a uniaxial load.

Figure 7–13 A uniaxial load curve to failure.
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The ends are larger than the test portion, so the gripping effects of
the machine do not affect the stress in the thinner test portion. The cross-
sectional area of the test portion is measured accurately before the test
begins. The stretch in the sample is measured by the machine as a dis-
placement, and the load is measured with a pressure transducer, These
are recorded on a chart similar to that shown in Figure 7–13. The
machine itself is massive in relation to the size of the sample, but never-
theless it has some amount of elastic stretch while pulling tension, as
does the wider portion of the sample, so usually an electronic strain
gauge is attached to the sample in the thinner area to measure the stretch.
The results may be plotted as load versus stretch, which is the raw data
from the machine, but that is not of much use unless one is testing a par-
ticular structural element or part as opposed to a sample of material like
we are considering here. We use the following relationships to get the
values for a stress-strain plot:

Figure 7–14 A test sample of steel.
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where the stress is the machine-measured load divided by the cross-sectional
area of the sample, and the strain is the stretch in the sample section divided
by the original length of the sample section. These are plotted as in
Figure 7–13. Similar tests may be run in compression or cyclical loading.

In looking at Figure 7–13, we see that the material deforms elastically
up to the yield point, then begins its plastic deformation, in which a lot of
strain takes place with little increase in stress, yet the stress continues to
increase up to a point, where it begins to decline until the sample fails.
The part of the curve where the stress continues to increase in the plastic
range is called strain hardening. But what about the part of the curve
where it starts to decline. Is this “strain softening” then? This part of the
curve can be misleading because of the way we defined the stress and
strain. Our definition holds only for very small deformations. If we actu-
ally measured the cross-sectional area of the sample as it stretches, we
would find that the area is getting smaller. So, what we have plotted on the
vertical axis is not the true stress, but rather the load divided by the orig-
inal cross-sectional area of the sample, which is commonly referred to as
the engineering stress. And, if we looked at the failed sample, we would
see that the most significant decrease in cross-sectional area occurred in
only a small part of the length of the sample and the cross-sectional area
at the point of failure is possibly less than half the original area. If we
were to plot the true stress, we would find that, in many cases, it continues
to increase right up to the point of failure; and for some materials, the
increase is rather drastic just before failure. We might also note that our
measure of strain is no longer valid either, since the reduction in cross
section (called necking-down) is quite localized, so that the uniaxial strain
in the region of failure is apparently a lot greater than elsewhere along the
sample length. The true strain is not  but rather , which leads
to a true uniaxial strain measure:

(7.15)

We might also note that the appearance of the sample itself began to
change just before failure, in that visible bands of discoloration or surface
texture began to appear on the surface of the sample where the area reduc-
tion was most pronounced, giving the appearance of some change in the
metal itself. These are called Lüder’s bands, and that is exactly what they
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indicate. Two things are of importance here. If we tested several samples
of the same material, all would fail at different values. That is the nature
of materials; we cannot predict the actual load value at which the material
fails. We can determine a range of values, but we cannot predict the exact
value for any particular sample. If all of the samples were cut in precisely
the same way under the same conditions and we could perform rigorous
inspections on them, we could get pretty close, but the point is we could
not predict the exact failure strength. The second point is this. We said
that, if we used a measure of true stress and strain, then we could say that
the material never got “weaker” before it failed, and that is often true.
However, the sample itself got weaker before it failed, and that is impor-
tant. In terms of total load, it failed at a load less than the maximum load it
was subjected to in the test. If it were a structural member or casing, that
would be important. So, while the true stress is important, the load on a
structure does not know to reduce itself when the cross-sectional area of a
structural member is reduced due to plastic deformation. We never want
to go beyond that maximum load value, no matter how we measure stress
or strain.

Now, let us go back to the issue of strain hardening mentioned earlier.
Strain hardening in a metal, for the most part, is caused by defects in its
crystalline structure, called dislocations. All steels have some amount of
this type of defect. But defect might be a severe term to use in an oil-field
context, so perhaps a dislocation should be thought of as an imperfection
in the crystalline lattice of a metal. A dislocation is a missing bond at a lat-
tice junction. When a metal is stressed beyond its initial yield point, these
dislocations begin to move or migrate. No material physically moves (at
least, on an observable scale), but where a bond is missing at a lattice junc-
tion, a bond forms, and the missing bond is transferred to the next junction,
sort of like the game of musical chairs, where there is one fewer chair than
the number of people present. When one person gets up, another takes his
or her place. What causes the strain-hardening effect is that as these dislo-
cations begin to accumulate at grain boundaries, there is no other place for
them to go, and they begin to resist the deformation of the material. There
are other contributing factors, but that is the main one. While most struc-
tural steels are strain hardening materials to some degree, some are not.
Some brittle steels exhibit very little strain hardening, and failure strength
is very close to the yield strength. Some soft steels behave more like what
is known as an elastic–perfectly-plastic material, in that once yield stress
is reached, the material continues to elongate to failure with no additional
stress required. The steel used for coiled tubing closely approximates this
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latter behavior. Also some strain-softening materials are such that, once
yield is reached, continued elongation requires less and less stress.

For a strain-hardening type of steel, if we stop loading a sample
before we reach the maximum and remove the load, we know that it
unloads elastically as shown in Figure 7–12. What happens if apply a load
again? The answer is that it goes right back up the same path as the
unloading path. Furthermore, it does not yield until it reaches the value at
which the load was removed before. It may vary with a bit of hysteresis
and become slightly nonlinear before yielding again, but after yield, it
continues on the same path, as if the unloading never took place. The
result, though, is that, on re-loading, it actually yields at a higher value
than the original yield value at the start of the test. We could repeat this
process any number of times, and each time, we increase the yield value
until we reach the top of the curve. So, for a strain-hardening material, we
can increase the yield strength by cold working it. Or can we? It all
depends on what our application is. Let us look at compression.

If we were to test an identical sample in compression, it would be a
mirror image (and upside down) of the one we just showed. And we could
compress it to the same point and increase its yield strength in compres-
sion just as we did in tension. The question is, then, if we work our
sample in tension first then test it in compression, will the yield point in
compression be increased just like the one in tension? The answer is no, it
would not. In fact, if we increased the yield in tension, then the yield in
compression actually would be less than the initial yield. This is called the
Bauschinger effect. In other words, we cannot have it both ways. Is the
amount of reduction in compression equal to the amount of increase in
tension? Again the answer is no, the reduction in the compressive yield
stress generally is less than the increase in tensile yield stress. We can
show this with an ellipse, which we call a yield surface for now. We are
not plotting strain now but principal stress components in two directions.
Up is tension, down is compression. We do not concern ourselves with the
transverse component for now. We know that, when we increase the ten-
sile load, we increase the yield stress in that direction. One way to think
about it would be that the yield surface gets larger. In other words, it
expands by the amount we go beyond the initial yield stress, as shown in
Figure 7–15. This is known as isotropic hardening; the yield surface
grows uniformly in all directions. 

This means that we also increased the yield strength in compression by
the same amount; and we already said that does not happen. Isotropic hard-
ening does not happen, but it is useful in a few applications when repeated
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loading does not cause yielding in different directions. Another possibility
might be that the yield surface actually moves as shown in Figure 7–16.
Here, the yield surface stays the same size, but it moves as the stress
exceeds the yield stress. This model is called kinematic hardening.

For kinematic hardening in the simple uniaxial case we are dis-
cussing, the reduction in yield stress in compression is of exactly the
same magnitude as the increase in the tensile yield stress. We already
said that does not happen either. What actually takes place is something
in between. The yield surface grows, but it also moves. This is called
combined hardening. And what all this amounts to is this: When working
in the plastic regime, we have to keep up with the growth of the yield sur-
face and keep track of where it is. This usually is done with something

Figure 7–15 Isotropic hardening, the yield surface grows uniformly.

Figure 7–16 Kinematic hardening.
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called internal state variables, which are defined by a flow rule to
account for the translation of the yield surface and a growth law that
accounts for its expansion or hardening. In the simple incremental theory
of plasticity, one internal state variable is a second-order tensor that
tracks the translation of the yield surface, and the other is a scalar that
keeps track of the size of the yield surface. Take into account also that we
are not talking about the three-dimensional space we live in, but rather a
nine-dimensional stress space. Another point of complication is that,
when the stress is on the yield surface (it cannot go past it), the most
common plasticity theory requires that plastic strain can take place only
in a direction normal to this nine-dimensional hypersurface. In some
plasticity theories, the yield surface is not regular and smooth, like the
ellipse we illustrated, and loading paths also may change shape in addi-
tion to size and location. Additionally, in larger deformations such as the
necking discussed in the uniaxial test previously mentioned, localized
rotations within the material begin to occur. These rotations must be
tracked, too. At some point, we begin to kid ourselves as to what we
know how to do in this strange space. So we are going to drop back a
notch or two for now and think about how to stay out of it. Obviously, if
we stay inside that yield surface with our stress and do not bump into it,
we should stay out of serious trouble. That is the topic of the next sec-
tion, but let us look at one more scenario first.

One of the most difficult aspects of materials that have been loaded
beyond the initial yield point is predicting their properties at a later time,
because the loading beyond initial yield makes it a history-dependent
material. You cannot predict its future behavior unless you know the his-
tory of its loading. For example, suppose we take two identical samples,
both with an initial yield strength of 80,000 lbf/in.2. We subject them both
to a uniaxial load of 90,000 lbf/in.2. In other words, we work hardened
them in tension to increase the yield strength (in tension). We give the two
samples to Alice and Bob, who are engineers for a company looking for
higher-strength casing for some special high-pressure applications. We
tell them we developed a process for increasing the yield of N-80 material
to 90,000 lbf/in.2 yield strength, and we can sell them this new material at
a cost only slightly above the cost of N-80. Bob takes his sample to a lab
to verify our claim. He subjects it to a uniaxial tensile test and finds that it
indeed has a yield strength of 90,000 lbf/in.2, as we claimed. He is
impressed. But Alice, also skeptical, has an application where the casing
will be in compression due to thermal loading while producing hot gas
from a deep well. Consequently, she asks the lab to test her sample in
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compression. She finds that the yield is not 90,000 lbf/in.2, as we claimed,
nor is it even 80,000 lbf/in.2. In fact, her lab tests show the yield in com-
pression is only 78,000 lbf/in.2, which is lower than N-80. She thinks we
are frauds. 

That example was for a simple uniaxial test. If we had subjected a
large sheet of steel to the same uniaxial stress then cut samples from it in
various directions, the results would have been even more alarming. The
point is that, when a metal is loaded beyond the initial yield point, we
cannot possibly predict its behavior, unless we know the history of the
loading. And, that not only means the exact loads but also the exact
sequence. One oil-field example would be a well like the one with which
Alice was concerned. If, in compression due to thermal expansion, as in
Alice’s well, suppose a portion of the production casing string yields.
Take into account that, during the heated stage, the packer fluid also is
heated and expands, causing a high internal pressure in the casing.
Assume that the casing actually yields at the inner wall with a combined
axial compressive stress, a radial compressive stress, and a tangential ten-
sile stress, but because of strain hardening, it does not actually fail in this
particular case. Then, the well is shut in for a few days and cools to where
that portion of the casing is now in tension and even has a net differential
pressure from the outside. Now, the state of stress at the inner wall is axial
tension, radial compression, and tangential compression. What is the
yield strength of the casing under that load? All we can honestly say is
that it is different than it was before the yield occurred and probably less,
but without knowing the exact history of the loading, we cannot predict
the yield in the current state. We may be able to get close enough for “oil-
field use” with some assumptions—or we may not.

The history dependence and the changes in yield are the primary rea-
sons we try to stay out of the plastic regime in most engineering design. We
can do fairly well with one-time loading, but when the loading is cyclical
and even varies with the cycles, it gets extremely difficult to get any mean-
ingful results. John Bell, who did significant experimental work with large
deformation plasticity at Johns Hopkins University, once made the com-
ment that, if you subject a material to varying loads beyond the initial yield
point, it may become impossible to even find the yield point experimentally.
What that translates to is that incremental plasticity theory works much
better as a mathematical concept than it does with real materials. 
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7.5 Yield Criteria
A yield criterion is a collection of assumptions and formulas that define the
limit of elastic behavior under any possible state of stress. We call that
limit a yield surface, although it is a surface in a mathematical sense only.
There have been many yield criteria over the years, but two have proven
quite successful, especially for metals such as steel. The oldest of these is
that of Tresca, dating back to 1864. It is a piecewise linear model that in
cross section is a hexagon. It found a lot of use before computers became
available for computations and still enjoys some use because it lends itself
to a number of closed-form solutions that otherwise require a computer
and numerical solutions. The other yield criterion that is most used and
best models materials like steel for small deformations is the one widely
attributed to von Mises in 1913, who developed it from theoretical con-
cepts. The idea behind this yield criterion was first mentioned by James
Clerc Maxwell in 1858 but never published except in his private letters and
again by M.T. Huber in 1905. Huber’s work was published, but it went
unnoticed because it was published in a journal that was not widely read
outside his home country. About 11 years after von Mises’s publication,
Hencky did some work with plasticity, especially in the range beyond the
yield point, and his name became associated with it too. So, variously, you
will hear it referred to as the von Mises yield criterion, the Maxwell-Huber-
Mises yield criterion, the Huber-Mises yield criterion, or the Hencky-Mises
yield criterion. That should give fair due to all those who contributed their
skills to the idea, but we call it the von Mises yield criterion for the sake of
brevity. The von Mises yield criterion is circular in cross section, which
makes more sense than the Tresca criterion, but it does not lend itself well
to many closed-form solutions of elastic-plastic problems.

The von Mises yield criterion may be stated mathematically as

(7.16)

where Y is the uniaxial yield strength of the material and J2 is the second
deviatoric stress invariant, defined previously. The yield condition is

(7.17)
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The first two conditions are easily understood, but the third begs com-
ment. This means that the combined stress combination, , can never
be greater than the yield, because the yield always changes so that that
value never goes beyond the yield surface. So Y in this context refers to
the actual yield and not the initial yield point. 

Now, comes a bit of semantics. Suppose we calculate J2 from our load
data on our casing at some point, plug it into the formula, and find that it is
greater than the published yield strength of our casing. In that case, we can
say our load is such that the initial yield would be exceeded. But this is
important to understand, it does not tell us by how much. If we used elas-
ticity formulas to calculate the stress in the pipe, and the resulting value of

 is greater than the yield strength of the pipe, then the values we calcu-
lated for the radial and tangential stress and axial stress are purely fictitious. 

It is time to discuss the quantity . What is it? It has the units of
stress, traction, pressure—is it any of those things? No, it is not. It is a
scalar quantity with the same units as stress, or traction, or pressure. It is
definitely not a stress. You might well ask, then, how can we compare a
scalar to the uniaxial yield stress and get anything meaningful? The truth is
we are not comparing it to the uniaxial stress, we are comparing it to the
value of  in which  and all other stress components are zero.
We, in fact, are comparing it to another scalar. In continuum mechanics, 

may be written in several different forms and it is never referred to
by any particular name. In the petroleum industry, it has come to be known
as the von Mises stress. But, as we have stated, it is not a stress. And, in
particular, if it is greater than the initial yield strength of the pipe, then it is
purely fictitious as a physical quantity if we calculated it from elastic
assumptions. If you want to call it the von Misses stress, the equivalent von
Mises stress, or the fictitious stress, go right ahead, as long as you under-
stand what it is and what it is not. Here, we adopt a way to use it that
should not violate anyone’s sensitivity. We define a yield indicator:

(7.18)

where  is our yield indicator and  are the three principal stress
components, assuming the material is linear elastic. We also state that

, in other words  is the initial yield strength, and we do not concern

3 2J

3 2J

3 2J

3 2J σ11 = Y

3 2J

Ψ ≡ = −( ) + −( ) + −( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

3
1

22 1 2

2

2 3

2

3 1

2

1

2
J σ σ σ σ σ σ

Ψ σ σ σ1 2 3, ,

Y Yo≡ Y



246 Chapter 7—Beyond Basic Casing Design

ourselves with changes in the yield strength due to work hardening. The
yield condition is

(7.19)

This may seem a lot like nitpicking. It is. 
The best way to comprehend all this is to see a picture of it.

Figure 7–17 shows a plot of the von Mises yield surface plotted in prin-
cipal stress space, which fortunately has only three coordinate axes.

The von Mises yield surface is a cylinder in this space. The central axis
of the surface is along the line, . In theory, the ends do not
terminate, but we can assume that it extends as far as any load we could
practically imagine. (Be careful to not confuse this cylinder with a section
of pipe.) The meaning is that any combination of principal stress compo-
nents that plots on the inside of this cylindrical yield surface does not cause
yield and anything on the surface or outside does cause yield. The radius of
the cylinder is the yield stress. As discussed in the last section, this yield
surface grows and its axis moves about as various combinations of stress
exceed its initial boundaries. As it grows and moves, it may no longer
retain its shape as a cylinder and may even develop corners. Most plasticity
theory demands that the outside of the surface remain convex though. But,
as we said, our primary interest is not what happens outside this yield sur-
face but that we keep our casing stress inside it. Another thing that should
be apparent with this surface is that the central axis is a hydrostatic stress.
You can see that, no matter the magnitude of the hydrostatic stress, it
always plots within the cylindrical yield surface, it makes no difference
whether it is 1000 lbf/in.2 or 10 × 106 lbf/in.2. Hydrostatic pressure or ten-
sion cannot cause yield in materials that can be modeled by the von Mises
yield criterion. Figure 7–18 shows a case where we calculate a load on
casing using elastic assumptions, and we plot that point in principal stress
space. You can see that it is outside the yield surface (meaning that the
material will yield), and our yield indicator is the distance from the central
axis to that point. This gives some physical meaning to our yield indicator.
So the yield indicator or  is actually a distance measure in the prin-
cipal stress space. A distance measure (sometimes called a metric) is not a
vector but merely a scalar. It always is positive. You can see that  also is
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a distance measure in this space, and although it has the same value of, say,
 at the yield point in a uniaxial stress-strain test, it is not the same

thing. Maybe that does not justify the nitpicking, but at least you can see
the point.

Figure 7–17 The von Mises yield criterion in principal stress space.

Figure 7–18 Combined load outside the yield surface.
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As mentioned before, we can write the von Mises yield criterion in
several forms, such as equation (7.18), which is in terms of principal stress
components. If the principal stress components correspond to the coordi-
nate axes we can write it in terms of the coordinate axes components:

(7.20)

If the principal stress components do not correspond with the coordinate
axes, as when torsion is present, then we have a choice. We can resolve
the stress into principal stress components and use equation (7.18) or we
use the expanded version of the von Mises criterion when the axial com-
ponents of stress are not the principal stress components:

(7.21)

In this case, we normally consider only the shear stress due to torsion, σrθ
and the other two components of shear are assumed to be zero. If we
want to get the principal stress components and use the principal stress
formula, then

(7.22)

When we work with principal stress components, it is immaterial how
they are numbered, but the custom is that the largest value is number 1
and the smallest is number 3. There are a number of other ways to show
the von Mises criterion in equation form. Usually, it is shown in a form
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that makes sense as to how it relates to deviatoric stress, octahedral stress,
principal stress, and the like. One note of caution: Whenever doing
manual calculations with the von Mises yield criterion, no matter which
formula you use, be careful with the signs, so that you do not run amok.
Tension is positive; compression is negative.

Now that we have seen the von Mises yield criteria in equation form
and in a graph, let us examine how it applies to casing design. First of all,
we hear terms like biaxial casing design and triaxial casing design. Those
terms refer to the coordinate axes and the state in which the principal
stress components are aligned with those coordinate axes. And, in terms
of casing, the coordinate axes usually are circular cylindrical coordinates
(Figure 7–20 in next section). So biaxial casing design refers to two prin-
cipal stresses aligned with two coordinate axes. The two principal stresses
referred to are the axial stress component and the tangential stress compo-
nent. In a biaxial sense, the radial stress component is ignored. Triaxial
design refers to all three. If there is a nonzero shear stress component, as
in rotational torsion, then neither of those terms apply as the principal
stress components are not aligned with the coordinate axes. Although it is
not technically correct, some refer to any three-dimensional stress state as
triaxial, whether the principal stresses are aligned with the coordinate (or
pipe) axes or not, and that is okay as long as we understand the meaning. 

In Chapter 5, we employed an ellipse in a two-dimensional chart to
correct for the combination of tension and collapse pressure. Essentially,
that was a biaxial approach, and that chart is another way to visualize the
von Mises yield criterion. If the principal stress components are the tan-
gential, radial, and axial stress components, that is, no shear components,
then we can use equation (7.20) to derive the equation for the ellipse. On
the yield surface, , the yield indicator is equal to the yield stress:Ψ = Y
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With a bit of algebra, we have gotten the von Mises yield surface into an
elliptic equation of the form

This is a quadratic equation we can solve as

which we can put in a more useful dimensionless form:

We can write this in terms of the principal stress components:

(7.23)

or, equivalently,

(7.24)

We can plot either of those as in Figure 7–19, which is exactly what we
used in Chapter 5.

So far we have not accomplished much. We have taken a three-
dimensional surface and plotted it in two dimensions. Since the radial
stress is the negative value of the pressure on the wall of the tube, we can
substitute that into the equations. Then, if we know the pressure and one
other component, we can find the value of the third at the yield surface.
However, this is no easier than calculating it, but it does provide a useful

r x xy y2 2 2= − +

x
y

r
y= ± −

2

3

4
2

4

x

r

y

r

y

r
= ± −

2
1

3

4

2

2

σ σ σ σ σ σ
θ θz r r r

Y Y Y

−
= − ± −

−( )
2

1
3

4

2

2

σ σ σ σ σ σ
θ − =

−
± −

−( )r z r z r

Y Y Y2
1

3

4

2

2



7.5  Yield Criteria 251

way of illustrating an elastic stress state in relation to the yield surface.
The basis of biaxial casing design is that we ignore the radial stress,
which usually is small compared to the other two components, and we
have the following equivalent equations:

(7.25)

(7.26)

Those are the biaxial design formulas (we need only one), then we could
plot them and the plot would be exactly as before, except we assume the
radial stress or pressure at the wall is zero. One always should remember
that the underlying assumption of biaxial casing design is that the radial
stress component is relatively small compared to the tangential and axial
stress components, and that assumption is not always true.

Before leaving this section, it might be worth illustrating the von
Misses yield criterion with an example to show how the hydrostatic pres-
sure has no effect on yield.

Figure 7–19 The von Mises yield criterion in two dimensions.
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Example 7–1

Suppose a block of steel in the shape of a cube has a yield strength of
40,000 lbf/in2. It is loaded three-dimensionally in tension such that the three
principal stress components are , ,
and . Each of those components is greater than the yield
strength of the steel. Will it yield? We calculate the deviatoric stresses to see
the hydrostatic pressure effects: 

Then we calculate :

Then, we substitute into the yield criterion to calculate the yield indicator:
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And, we check the yield condition:

For this particular example we did not have to even make the calculations,
because we could see that two of the components were 50,000 and the
third was greater than that, so the hydrostatic stress is 50,000. We subtract
that value from 80,000 and it leaves us with the equivalent of 30,000 in
one direction.

Before leaving this section, we offer a word of caution. The von
Mises yield criterion is not based on physics, it is more of what might be
called phenomenological, in that it describes what is observed rather than
any underlying principle of physics. Before you go away overly enthralled
with it, we should offer a quotation from Bernard Budianski of Harvard
University, one of the world’s foremost solid mechanics experts, “no one
really believes Mises’ theory is really right. It might be good enough, but
it is not really right” (Budianski, 1983). 

7.6 Mechanics of Tubes
Casing is a tube. A tube may serve as a beam, a column, a pressure vessel,
or any combination of the three from the standpoint of mechanics. A casing
string, to some extent, is all of those. The stress in a tube is of particular
interest to us in light of the yield criterion we just discussed, since that is
what we need to know to determine if the tube is in an elastic range or not.
We are fortunate in many respects that a tube is a fairly easy structure to
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analyze in an elastic state. In general, we need be concerned with only four
stress components for our applications:

• Axial stress.

• Radial stress.

• Tangential stress.

• Torsional stress.

To understand these stresses, we first need a convenient coordinate system.
One that fits our needs quite well is a circular cylindrical coordinate
system, as shown in Figure 7–20.

There are three orthogonal coordinate axes, as with a Cartesian coor-
dinate system. The axial coordinate, z, runs along the central axis of the
tube; the radial coordinate, r, that runs from the central axis out in any
direction; and the tangential coordinate, , which is an angular measure
about the central axis as measured from some arbitrary reference point.
The main difference between this and a Cartesian coordinate system is
that two of the coordinate measures are in standard length units and one is
an angular measure. Hence, the physical meaning of  is not the same as
z or r. The measure of physical distance in the  coordinate is .

Figure 7–20 Circular cylindrical coordinate system for use with casing.
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Axial Stress

The axial stress in a tube that is not bent is merely the axial load divided
by the cross-sectional area of the tube:

(7.27)

where

We always assume that the pipe is straight and stress free before it is run
in a well. If the pipe is in a curved bore hole, there will be additional
stresses in the axial direction due to bending, which we will discuss later.

Radial and Tangential Stress

We should all be thankful to Lamé, who in 1852, worked out the elastic
stress solutions in tubes due to internal and external pressure. His solu-
tions for the axial stress due to the pressure depend on whether the tubes
are open on the ends, capped on the ends, or the ends are fixed (plane
strain). The Lamé solutions for the stress components due to pressure are
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(7.30)

where the nonsubscripted r is the radius at some point in the wall of the
pipe, where we want to calculate the stresses. The axial stress due to the
pressure is added to the axial stress in the pipe due to gravity and bore-
hole friction if any. Be careful and think about equation (7.30) before you
start adding pressure effects to the axial stress due to gravity and friction.
Capped-end conditions affect casing only when one end of the casing is
free to move. When casing is run in a well, the only time the capped-end
condition normally applies is when the top wiper plug is bumped during
cementing. After that, it is fixed at the top by the wellhead and below by
cement. If you want to consider the wellhead a cap, then you must also
consider that, for it to move enough to cause an axial stress change in the
casing string, it must move every tubular string in the well, some of which
are cemented to the surface. (Some thermal wells allow for wellhead
movement.) The second term in the capped-end formula is for external
pressure that acts on the free end, pressure that may or may not be present.
If the ends are fixed, you must know if they were fixed before the pressure
was applied or afterward because the fixed-end axial stress equation is
only valid for changes in the axial stress due to pressure applied after the
ends are fixed.

Those formulas are useful as they stand, but as it turns out we are not
really interested in the stress at various points within the wall of the cyl-
inder, because the maximum stress always is at one of the walls if there is
pressure. Which one? It is not intuitive, but whether the greater pressure is
internal or external, yield always occurs at the inner wall first. (Work it
out, if you do not believe it.) If we substitute ri in place of r to get the
Lamé solutions at the inner wall, we find they are greatly simplified:

(7.31)
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(7.32)

The axial stress does not change from equation (7.30). The sum of the
radial and tangential stress in that equation is a stress invariant through the
wall of the tube, so it does not matter if they are calculated at the inner
wall or outer wall, so long as both are calculated at the same place. One
more caveat. Often you may see the tangential stress equation without the
second term in the numerator. That is typical of pressure vessels where
there is no external pressure. Many use that form and use the difference
between the internal and external pressure as the internal pressure. Don’t
do that! Yes, it gives close results, but it is a sloppy practice.

There are times when we might want to calculate the radial and tan-
gential stress at the outer wall. This is because, in bending and torsion, the
tube yields first at the outer wall, so if we are checking for yield, we may
want to check both the inner and outer walls. The radial and tangential
stress components at the outer wall are

(7.33)

(7.34)

Remember that these are elasticity solutions based on a linear elastic
material. They are not valid beyond the yield point.

Torsion

We do not often rotate casing in a well bore. It does help in attaining a
good primary cement job, but often the friction in the well bore is such that
the torque required to rotate the casing exceeds the maximum recom-
mended makeup torque of the connections such as ST&C, LT&C, buttress,
and so on. However, many times, liners are rotated while cementing and
casing can be rotated with some proprietary connections or special stop
rings inserted to prevent overtorqueing of nonshouldered connections, like
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buttress, ST&C, or LT&C. The equation for the shear stress due to torsion
in a pipe body is given by

(7.35)

where  to calculate the shear stress at the outer wall where it is a
maximum or  at the inner wall. The torque in the casing is τ  and it
must be in consistent units. In oil-field units it usually is in lbf · ft and it
must be multiplied by 12 to change it to lbf · in. to be consistent with the
radii units. In SI units, the torque will be in Joules (N · m) so the radii
must be in meters so the stress will be in Pa.

Bending Stress

The bending of casing in curved well bores is discussed in detail in
Chapter 9, so all we present here is a formula for bending stress to com-
plete this section:

(7.36)

The radius of the pipe is  at the outside wall where the bending
stress is a maximum, and  if it is desired to calculate the bending
stress at the inner wall. The radius of the well bore curvature is . It
should be in the same units as the radius of the pipe. The bending stress
has a plus sign on the convex side of its curvature as that portion is in ten-
sion. On the concave side, it is negative because it is in compression. It is
added to the axial stress for determining yield, but it should be remem-
bered that the bending stress is a maximum only along a line running par-
allel to the central axis in the plane of curvature on the convex side and
the concave side. The values calculated in the bending equation are not
the bending stress at other points around the circumference of the tube.

7.7 Closure
We have barely scratched the surface of solid mechanics, but we have
gone far beyond what most petroleum engineers and other engineers
coming into petroleum engineering from other disciplines, such as elec-
trical or chemical engineering, normally have been exposed to at an
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undergraduate level. This should help you understand much of what is
written in the literature on the behavior of casing. Some of the termi-
nology appearing in the petroleum literature is a bit convoluted at times,
but most of it represents the honest efforts of those dedicated to trying to
solve the problems of casing loading and design.

A number of references are available for those who want to learn
more about the mechanics of solids. Some are a bit advanced, but most are
readable and understandable. The book by Fung (1965) is excellent for
solids, although some of the terminology has been supplanted since it was
published. The book on continuum mechanics by Malvern (1977) remains
the all-time basic standard, and he covers fluids in addition to solids. As
to plasticity, the book by Chakrabarty (1987) is easy to read and under-
stand, although it may be hard to find now, but his newer book, Chakra-
barty (2004), has a good overview of plasticity in the first chapter. The
book by Hill (1950) on plasticity is still available, since it has been
reprinted many times (1998 being the latest). The basics of plasticity also
are covered by Fung and by Malvern in their books. As far as elasticity is
concerned the book by Timoshenko (1934) is an all-time classic on almost
everyone’s bookshelf, although it is not a good book for learning about
elasticity, since it is mostly a collection of elastic solutions (and in that
respect it has no peer). As to learning about elasticity, many books are on
the market, and the one by Boresi and Chong (1987) is a good one,
although almost everyone swears by some favorite from which he or she
learned elasticity.
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CHAPTER 8

Casing Design Performance

8.1 Introduction
In earlier chapters, we took the published values of casing strengths a face
value. In this chapter, we look at some of the formulas from which those
strengths are calculated. We are going to see where they came from, their
limitations, and some of the formulas being considered to replace them.
We are going to look at combined loading and its affects, lateral insta-
bility (buckling), and the effects of temperature on casing design.

Reiterating what was mentioned in the preceding chapter, we cannot
actually predict failure of a joint of casing. We are not interested in the
actual value at which a joint of casing fails. What we are interested in is a
value we can use as a design limit. A particular joint of casing may fail at
that limit or it may not; the important consideration is that it not fail before
that point. Historically, yield strength has been used as a design limit, and
that continues. However, some of the formulas used in the past were based
on some simplifying assumptions and tests that did not realistically model
actual loading. For example, the API collapse formulas are based on col-
lapse tests on very short samples of casing, and it has been found that joint
length plays a part in collapse, to the extent that end conditions affect the
collapse of short tubes. So, much of what is covered in this chapter might
be characterized as design strength formulas and calculations. Most are
still based on yield strength or test data. While it may be perfectly accept-
able to use conservative formulas in the vast majority of wells drilled in the
world, there are deeper, high-pressure, high-temperature wells where such
conservative formulas might greatly increase well costs by requiring much
higher strengths than is necessary or even available. We examine the cur-
rent formulas and discuss some of the proposed changes.
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8.2 Tensile Design Strength
Casing failure in tension is not common. When it does occur it usually
occurs at a connection, and the connection is usually ST&C or LT&C.
The failure in those types of connections usually is a result of pullout
rather than fracture of the casing. In some cases, the pullout is the result of
a split coupling due to hydrogen embrittlement or over torqueing during
makeup. As far as tensile strength of casing is concerned, it is specified in
two ways by the API and ISO, pipe body yield and joint strength. The first
is the value of the pipe body yield strength exclusive of threads, expressed
as axial tension (or compression) rather than axial stress, and the second
is the value of the connection strength, always refers to tension and not
compression. The pipe body yield values use the minimum yield strength
as the design strength limit. The joint strength is based the minimum
value from formulas that use the minimum ultimate strength and the yield
strength separately or in combination.

Pipe Body Yield

Pipe body strength at yield is the yield stress of the metal multiplied by
the specified cross-sectional area of the tube.

(8.1)

where

For example, the pipe body yield for 7 in. 23 lb/ft N-80 casing is
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which is the value shown in the published tables. This value is valid for
either tension or compression. For ST&C and LT&C couplings, the
strength of the connection usually is less than that of the pipe body. So
one must be aware of the joint strength as well.

Joint Strength

Joint strength is usually the yield strength of a casing connection in
tension; however, formulas also are available for the fracture strength of
connections, although they are not used often in casing design. The calcu-
lation of joint strength depends on the specific type of coupling and
includes things such as the makeup length of the threads, the cross-
sectional area of the tube under the last full thread, and so forth. Further-
more, the resulting formulas have been adjusted to fit actual test results
with various samples of casing connections. The resulting formulas for
ST&C, LT&C, buttress, and extreme-line are listed in API 5C3 and ISO
10400. Additionally, one must refer to API 5B to get some of the neces-
sary thread dimensions for use in the formulas. Proprietary thread manu-
facturers, in general, do not publish their formulas but only the connection
strength values. For those reasons, we do not include any joint strength
formulas here. Almost no one actually uses them, since the results are
published in many tables. The thing we must point out as a precautionary
note is that one should always check both the body strength and connec-
tion strength for any casing design. And remember, the strength of con-
nections in compression is not addressed by API standards.

8.3 Burst Design Strength
The historical API formula for what we commonly refer to as burst is not
actually a formula for burst or pipe rupture but a yield formula for internal
pressure. It is based on a thin-wall tube that assumes yield takes place
across the entire wall thickness at a single pressure. It also includes a
design factor to account for the 12.5% variation in wall thickness allowed
by API casing specifications (API Spec 5C2 or ISO 11960). The result is
a formula for the internal yield pressure:

(8.2)

or, in terms of wall thickness, t,

p Y
d d

d
o i

o

= −
0 875.
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(8.3)

This formula is adequate for basic casing design, but it leaves a lot to be
desired. For one thing, it assumes that yield occurs throughout the pipe wall
at the same time, which it does not. What is lost by the assumption of a thin-
wall cylinder with a uniform stress throughout the wall of the cylinder? We
can use the Lamé elastic formulas along with a yield criterion to determine
the yield at the inner wall for a thick-wall tube and compare the results. In
the absence of any axial load or axial constraints, that is, the pipe is free to
move axially and the ends are not capped, the Lamé formulas (see the
previous chapter) give the stress components at the inner wall as

(8.4)

At yield, the following holds for the von Mises yield criterion:

(8.5)

If the external pressure is zero, that is, , then we can solve this
equation for the internal pressure at yield in terms of the yield strength of
the pipe and the internal and external diameter of the pipe. The result is

(8.6)

This equation is the thick-wall equivalent of equation (8.2), except it does
not account for a tolerance in the wall thickness. The wall thickness is
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accounted for in ISO 10400 by calculating an internal diameter based on
the tolerance in the wall thickness such that, for this equation,

(8.7)

This definition uses the standard API tolerance; however, other values
could be used for specific situations where the actual tolerance is known
as opposed to the specified maximum tolerance of 12.5%.

Example 8–1

Comparing equations (8.2) and (8.6) for 7 in. 26 lbf/ft P-110 casing, the
first gives an internal yield of

which is the current value shown in most published tables. Equation (8.6),
along with the 12.5% tolerance, gives

That is only a slight difference for this example, and the difference will
vary with wall thickness. The formula based on thick wall tubes will usu-
ally be slightly conservative. The problem with the API formula, though,
is that it is valid only if the pipe has no axial stress. It also assumes that
any external pressure can be accounted for by subtracting it from the
internal pressure and using the difference, , as the internal
pressure (as long as ). Some do the same thing with the Lamé for-
mula for tangential stress, which is not good practice, because it does not
give the same result as when both internal and external pressures are used. 

�d d d di o o i≡ − −( )0 875.

p Y
d d

d
o i

o

= − = ( ) − ≈0 875 0 875 110000
7 6 276

7
9960. .

.
 lbf/in2

�

�

d d d d

p Y
d d

i o o i

i
o i

= − −( ) = − −( ) =

= −

0 875 7 0 875 7 6 276 6 367

2 2

. . . .  in.

33
110000

7 6 367

3 7 6 367
9900

4 4

2 2

4 4d do i−
= −

( ) +
≈

�
.

.
 lbf/in2

Δp p pi o= −
Δp > 0



266 Chapter 8—Casing Design Performance

Ductile Rupture

The new ISO 10400, currently up for adoption, includes new formulas
for ductile rupture. Few, if any, oil-field tubulars actually fail in rupture
when the internal wall surface reaches the yield point, which is the basis
for the conventional API/ISO formulas for “burst” or, more correctly,
internal yield. If the material were perfectly plastic, it would quickly
yield all the way through the wall thickness as the pressure is increased
and rupture, but that is not the way most oil-field tubulars behave (coiled
tubing excepted). Unless they are very brittle, they are made of a strain-
hardening material, so that once the yield stress has been exceeded, the
stress still increases before ultimate failure occurs, as discussed in
Chapter 7. New ISO formulas take that into account by actually mod-
eling the material behavior in the plastic regime. In addition, certain
defect sizes are taken into account, so that the pipe may more realisti-
cally model actual casing, and even fracture growth is considered. To use
these formulas, one must have more data than one normally has when
looking at a pipe inventory list of available casing for a specific applica-
tion. In particular, one needs inspection results for the casing to be used
or at least have a specific inspection in mind and know that casing not
meeting those standards will be culled from this particular application.
We are going to present only some basics of the formulas here, but before
using these formulas, one should definitely read the discussion in ISO
10400 (Appendix B) and some of the associated references. The primary
ductile rupture formula in ISO 10400 includes a capped-end effect such
that the internal pressure generates an axial strain due to the pressure
effect on the end caps. For a capped-end effect to be realized, one end of
the casing must be free to move in relation to the other end, so that the
axial stress is a function of the internal pressure. This almost never hap-
pens in a well, since one end of the casing is cemented (fixed) and the
other attached to a wellhead. Unless the wellhead is free to move, the
capped-end effect does not occur. One could argue that the wellhead may
move, but its movement is considerably restricted by the other strings of
pipe also attached to the wellhead, in addition to the fact that the con-
ductor and surface casing are usually cemented at the surface. For casing,
the pressure effects are almost always those of fixed ends not capped
ends. That being said then, the design formula for the internal pressure at
ductile rupture with capped ends is
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(8.8)

where

This formula is called a design formula, which calculates rupture assuming
certain minimum values for the quantities in the formula, such as the min-
imum tensile strength. This is derived from a limit state formula, which
predicts rupture for a specific sample where the quantities just listed are
known exactly for that sample. Some of these quantities can be calculated
from measurements or tests. Table 8–1 lists suggested values for the hard-
ening index, . A hardening index, as used here, is a means of approxi-
mating a uniaxial stress-strain curve for a particular material, with a curve
fit to an idealized material, such as a Ramberg-Osgood material (Ramberg
and Osgood, 1943) or a Ludwik power-law material (Ludwik, 1909). The
units of equation (8.8) are either in inches for length measurements and
lbf/in2 for ultimate yield and pressure or mm for length measurements and
Pa (or kPa or Mpa) for ultimate yield and pressure. Consequently, no con-
version factors are needed.

We use this formula to determine the ductile rupture pressure for the
same casing in the previous example.
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Example 8–2

Using the same casing as in the previous example and assuming our
casing inspection finds all defects in excess of 5% of the wall thickness,
we determine the variable quantities for use in equation  (P-110 casing
has a minimum ultimate tensile strength of 125,000 lbf/in.2):

For the hardening index, we use the default value of 2.0 and calculate the
correction factor:

Table 8–1 Suggested Hardening Index Values (from ISO 10400)

API Grade Hardening Parameter, n

H-40 0.14

J-55 0.12

K-55 0.12

M-65 0.12

N-80 0.10

L-80 0.10

C-90 0.10

C-95 0.09

T-95 0.09

P-110 0.08

Q-125 0.07
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The depth of the wall thickness defect is

From the table, we get a hardening index for P-110, . We
substitute these values into equation (8.8):

We can see that this value is about 14% higher than the current API for-
mula. Part of this is because of accounting for strain hardening of the
material. But part of it is because of the axial stress due to the capped-end
effect. As we saw earlier with the von Mises yield criterion, internal yield
is higher in the presence of axial tension, which is what we have with a
capped-end effect. 

An additional ISO ductile rupture formula accounts for external pres-
sure and arbitrary axial loading. It is a limit state formula that is much
more complicated, and it is not shown here. Finally though, one should
note that the ductile rupture formulas take into account material behavior
in a plastic regime. In our discussion on plastic behavior in the previous
chapter, we pointed out that materials become history dependent in this
regime, so these formulas are valid only if the loading exceeds the yield
stress and proceeds to rupture. If the loading stops once yield has been
exceeded but short of the rupture value, then the formulas are valid for
subsequent loading only if the loading path is exactly the same as before,
once the new yield value is exceeded. Therefore, the use of the ductile
rupture formulas for cyclic loading that might exceed the yield of the
casing is questionable.

8.4 Collapse Design Strength
Casing collapse probably is the most common type of failure after corro-
sion and wear. There have been many cases of collapse due to defective
casing joints, but the cause often is one of not accounting for the actual
collapse load on the casing. This is especially true where the casing is in
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tension and subjected to a collapse load. Perfectly round casing with a
uniform wall thickness is quite resistant to collapse pressure. If there is a
variation in the wall thickness because of eccentricity or defects, the cross
section is ovalized, or the collapse loading is other than hydrostatic pres-
sure (e.g., bore-hole stability problems), then failure from collapse usu-
ally occurs at lesser loads. Collapse also depends on outside support of
the casing (see Figure 8–1) in that casing with little outside clearance or
partially supported by cement may begin to collapse, but the partial sup-
port may prevent total collapse. 

Sometimes partially collapsed casing may be restored with an internal
casing roller, but fully collapsed casing, especially with tubing inside usu-
ally is a total loss. It may be possible to mill out, and sometimes even
recover, a collapsed portion of the casing. When a tube begins to buckle in
collapse (collapse is a form of buckling), the buckle propagates along the
tube at a much lower pressure than what caused the initial collapse. The
buckle propagation pressure may be on the order of 60% of the collapse
pressure if the casing is unsupported. For an undersea, welded pipeline,
the entire line may collapse because of a defect in one joint. Fortunately,
in a casing string, a hydrostatically induced collapse typically is limited to
one joint, because as the buckle propagates, it usually stops at a coupling.
In the case of a threaded coupling, the propagation stops because the col-
lapse of the pipe inside a coupling does not transfer the load to the other
pin inside the coupling. It also opens the interior of the casing to external
pressure, so that the pressure differential is relieved. In the latter case, it
becomes what is known as a wet buckle, and it tends to stop at that point.
In the case of integral joints, the propagating buckle usually is stopped by
the increased thickness of the pipe upset. In that case, the upset serves as a
“buckle arrestor.” In the case of flush joint casing, the buckle might con-
tinue to propagate until the pressure differential is less than the buckle
propagation pressure, or it may stop if it becomes a wet buckle due to an
opening at one of the collapsed connections. An extreme example is
coiled tubing that has no connections; if it collapses, the buckle propa-
gates until the pressure differential is less than the propagation pressure.
There are formulas for collapse strength but not for buckle propagation.
Buckles have been observed to propagate at pressures of about 65% or so
of the initial collapse pressure (see Yeh and Kyriakides, 1986; Kyriakides,
Babcock, and Elyada, 1984; Chater and Hutchinson, 1984). For this
reason, many undersea pipelines now include rings, called buckle
arrestors, welded to the pipe at various intervals so that, if a collapse
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should occur, it will not propagate the full length of the submerged
pipeline.

Current API Collapse Formula

The API formula for collapse is not a single formula, but rather four:

• Yield strength collapse formula.

• Plastic collapse formula.

• Transition collapse formula.

• Elastic collapse formula.

Each formula has a range for which it is valid, depending on the yield
strength of the material and the ratio of the outside diameter to the
wall thickness. 

Yield collapse formula:

(8.9)

Figure 8–1 Collapse modes for casing: (a) unsupported collapse, (b) partially 
supported collapse (e.g., cement or coupling), (c) unsupported collapse with 
tubing inside.
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Valid range:

(8.10)

Plastic collapse formula:

(8.11)

Valid range:

(8.12)

Transition collapse formula:

(8.13)
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Elastic collapse formula:

(8.15)

Valid range:

(8.16)
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The units in these formulas are inches and lbf/in.2. For SI units, where
yield stress is in MPa, the collapse formulas and range formulas are the
same, but the API constants may be calculated from the following
formulas:

Numerical values of the constants are listed in tables in API 5C3 and else-
where. They are of little use though, because the values calculated with
those constants are already published in API 5C2 and many other sources.
However, when one finds it necessary to calculate collapse for some
casing not having a standard yield value (the only time one would need
the values of the constants), the table values of the constants are of no use.

The yield collapse formula is based on the external pressure that
causes yield to occur at the inner wall of the casing, so that the yield
strength is the design limit. Usually, the pipe will not collapse at that pres-
sure. The elastic collapse formula is based on elastic stability and does not
depend on the yield strength of the casing. The plastic collapse and the
transition collapse formulas are based on tests done on casing samples,
and the formulas essentially are curves fitted to the test results. The end of
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each range for the various formulas is the intersection of the curves for
each formula. 

There are difficulties with these collapse formulas other than that they
are not valid for collapse in combination with tension; for instance, only
the elastic collapse formula is valid in tension. The collapse tests were
made with very short sections of casing, and work done in recent years
has shown that the values in those tests were affected by the end condi-
tions. In the ISO 10400 standard currently up for adoption, a new
approach is recommended, although currently it appears only in an infor-
mational appendix. The new formulas are based on work originally done
by Tamano, Mimaki, and Yanagimoto (1983) and recently published
(Klever and Tamano, 2004). The full formula has in it provisions for
inclusion of defects, ovality, eccentricity, and so forth. Although currently
not adopted, it is an improvement on the API formulas, plus it has the
advantage of being able to include known data about the specific pipe for
a casing string and can be used in probabilistic casing design methods.
The formula essentially contains a yield collapse formula and an elastic
collapse formula and accounts for the transition between those two: 

(8.17)

where

(8.18)

is the elastic collapse portion, and

(8.19)

is the yield collapse portion. 
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In these formulas,  is a bias factor for yield collapse, and  is a
decrement factor for the transition region between elastic and plastic col-
lapse. These values can be determined from tests or one can use the values
in the tables of ISO/DIS 10400, as is done in Table 8–2. 

These formulas are used to calculate the collapse value of the casing,
which is not the same value as the old API formulas from API 5C3. Once
we have that value, we may use it and the tension in another formula to
calculate a reduced yield strength. Then, we use the reduced yield
strength in the preceding formulas to calculate a reduced collapse rating
due to the tension. The formula for determining the reduced yield is

Table 8–2 Common yield bias and transition decrement factors (after 
ISO/DIS 10400, 2004)

Cold Rotary, Straightened Hot Rotary, Straightened

API Grade Ht ky Ht ky

H-40 0.164 0.910 n/a n/a

J-55 0.164 0.890 n/a n/a

K-55 0.164 0.890 n/a n/a

M-65 0.164 0.880 n/a n/a

L-80 0.164 0.855 0.104 0.865

L-80 9Cr 0.164 0.830 n/a n/a

L-80 13Cr 0.164 0.830 n/a n/a

N-80 as rolled 0.164 0.870 n/a n/a

N-80 Q&T 0.164 0.870 0.104 0.870

C-90 n/a n/a 0.104 0.850

C-95 0.164 0.840 0.104 0.855

T-95 n/a n/a 0.104 0.855

P-110 0.164 0.855 0.104 0.855

Q-125 n/a n/a 0.104 0.850

ky Ht
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(8.20)

The procedure for calculating reduced collapse with the new, proposed
method is much easier than with the traditional API method. We show an
example of both methods of collapse with tension in the next section, but
for now, we look at an example of a collapse calculation with the pro-
posed new formula in the absence of tension.

Example 8–3 Example of New Formulas

We apply these new formulas to determine the collapse rating of 7 in.
32 lb/ft N-80 casing. We calculate the wall thickness first:

Next, we calculate the elastic collapse using equation (8.18):
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then, the yield collapse, using equation (8.19):

Now, we use these values in equation (8.17) to calculate the collapse
rating of the casing:

This is the value of collapse we would read from a table that uses the pro-
posed new collapse formula (recall that API rounds values to the nearest
10 lbf/in.2). It is a bit lower than the current published value of 8600 lbf/in.2

calculated using the current API formulas. Partly, this reflects that many of
the early API tests used short tube samples, which generally gave higher
collapse values. Also, the new formula distinguishes between cold and hot
rotary straightened pipe. We used the cold value here, but N-80 is one
grade that can be straightened by either method. 
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8.5 Combined Loads
Almost always, casing is subjected to some type of combined loading.
Here are the most common possibilities:

• Tensile and compressive loads due to gravitational forces, bore-
hole friction, hydrostatic forces, and bending forces.

• Collapse and burst loads due to hydrostatic pressures.

• Torsion loads due to bore-hole friction.

There are various ways to calculate a design limit for combined loading.
Most of them work, but some are quite misleading and can cause serious
problems if one does not understand the limitations. We are going to look
at a simple method that has been around for more than 150 years and in
publication for almost 100 years. It has proven effective throughout all
those years in all engineering design applications.

8.5.1 A Yield-Based Approach
What we would like to have is some method of quantifying the combined
loads into a single value to compare with some simple strength or stress
value for the material of the tube. For example, if Y is the yield stress
determined from a uniaxial test and  represents the combined load, we
might compare them thus:

(8.21)

This is exactly what we looked at with the von Mises yield criterion in the
previous chapter. The only practical difficulty we have at this point is that
casing loads generally are known in terms of axial force, pressure
(internal and external), and possibly torque. We need stress values for the
von Mises yield criterion. We showed formulas for those stress compo-
nents in the section on tubular mechanics, also in the previous chapter. Let
us look at an example.
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Example 8–4 Example of Combined Loads

Suppose we have a point in a casing string where the internal pressure is
4,000 lbf/in.2, the external pressure is 4,000 lbf/in.2, and the true tension in
the pipe at this point is 160,000 lbf. Our casing is 7 in. 23 lb/ft, K-55. It
has an internal diameter of 6.366 in. We increase the pressure at the sur-
face to 3000 lbf/in.2 to test it for a planned stimulation (the internal pres-
sure at our point of interest will be 7000 lbf/in.2). Will the pipe yield under
this load?

First of all, we want to determine where the pipe will yield first, at the
inner wall or the outer wall. Internal or external pressure always causes
yield at the inner wall first, as mentioned in the last chapter. We have no
bending or torque in the pipe, which always causes yield at the outer wall
first. So, we require the yield condition at the inner wall. Second is that
the test pressure of 3000 lbf/in.2 is applied after the casing is cemented
and hung off at the surface (i.e., the ends are fixed), so we have to account
for that in the axial stress.

Determine the axial stress before test pressure:

Determine the radial stress before test pressure using the Lamé equation
for the inner wall:

Determine the radial stress after the test pressure is applied:

Determine the tangential stress before test pressure using the Lamé for
thinner wall:
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Determine the tangential stress after test pressure is applied:

Determine the incremental radial and tangential stress due to the test pressure:

Then, using the Lamé equation for fixed end tubes, we calculate the
change in axial stress due to the test pressure:

The axial stress including the test pressure effects is
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Now, using the three stress components calculated in the presence of the
test pressure, we want to determine whether or not yield will occur. Since
there is no torsion, these values are principal stress components and may
be plugged directly in to the von Mises yield formula:

Finally, check the yield condition:

In this case, there is no yield. The combined load in this example is
approximately 75% of the yield strength of the pipe. Questions might
arise: How close to the yield strength would we allow if we were aware of
these calculations? What would be a reasonable limit? What are the rec-
ommended design factors for combined loading? Those are good ques-
tions, and there are no good answers. Some operators would go up to 80%
of the yield in a case like this, which would amount to a design factor of
1.25. That might be acceptable for a one-time occurrence, where the spe-
cifics are known in detail. If we were spot checking a conventional casing
design for a well that had not been drilled, we might want to think again.
In those cases, our confidence level might be somewhat less, so we might
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set a 1.6 design factor as an absolute minimum. You are on your own in
this area, unless your company has some particular policy.

One other caveat about using yield stress as a limiting point in com-
bined loading is that it does not account for collapse at loads lower than
the yield strength of the casing. You should always check the collapse
using the combined load collapse formulas of API or ISO, which are
covered in the next two sections.

8.5.2 Current API-Based Approach to Combined Loading
The current API method does not account for combined loads in combina-
tion with burst. Combined collapse and tension is considered, based on a
simplification of the von Mises yield criterion. A strict yield-based
approach like we just covered does not account for the possibility that col-
lapse for some casing may occur before the yield stress actually is
reached. In those cases, the API formulas for collapse in tension may be
needed as a supplement to the yield approach. 

In Chapter 7, we developed a two-dimensional version of the von
Mises yield surface. And, that is where the API based approach begins.
The von Mises yield surface in two dimensions is given by the equation

(8.22)

where  are the three principal stresses. In the absence of shear
components, such as torsion, the three principal stresses are 
and we may substitute them into equation (8.22) to get a convenient form
for our use:

(8.23)

We purposely set the stress components in that order, so that the radial
stress is the one we want to subtract from the other components. The
radial stress is the negative value of the internal pressure (recall that yield
due to internal or external pressure always occurs at the inner wall first). If
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it is zero, we can leave it out, but in any event, we should know its value,
so for now we rewrite it with the internal pressure:

(8.24)

Plotted it looks like Figure 8–2.
Now, here is how API uses this two-dimensional, or biaxial,

formulation. API assumes that the tangential stress becomes an effective
yield stress for collapse. So, we define an effective yield stress in collapse as

(8.25)

We may rewrite equation (8.24), adjusting the signs to account for the fact
that the tangential stress is compressive (negative) in a collapse situation:

(8.26)

This is essentially the API formula, except the API version assumes that
the internal pressure is zero and, hence, uses the following formula:

(8.27)

This formula is used to calculate a reduced yield value, . That reduced
yield value then is used in the appropriate API collapse formula, from the
earlier section on API collapse, to determine the reduced collapse value
due to the tension. If there is internal pressure, then a correction factor is
added to the reduced collapse pressure to account for the internal pressure:

(8.28)
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Example 8–5

Using 7 in. 32 lb/ft N-80 casing from the basic casing design example and
an axial design load at the bottom of that section of 42,000 lbf, we want to
determine the reduced collapse strength of the casing. The published API
collapse value with no tension is 8600 lbf/in.2.

We calculate the reduced yield using equation (8.27):

We now have to determine which collapse formula to use. To do that, we
need the value of do/t:

Figure 8–2 Von Mises yield surface in two dimensions with principal stresses, 
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We also need the API formula constants at the reduced yield strength.
Without showing the calculations, we calculate them from the formulas
shown in the section on API collapse formulas:

We start with the range limit for yield plastic collapse from equation
(8.10) using those constants and do/t = 15.453:

We see that our value of do/t is greater than that, so we must then check
the formula for the upper range of the plastic collapse formula which is
equation (8.12):

 Our do/t is within the range of the plastic collapse formula, so we use
equation (8.11) to calculate the reduced collapse strength of the casing:
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This shows a reduction of 180 lbf/in.2 in the collapse resistance of the
casing due to tension. It is not much in this case, but it might put our
design below the minimum design factor, in which case, we might have to
adjust the design to compensate. We did not add a pressure correction for
internal pressure and use the actual external pressure as the collapse pres-
sure, since in our example, the production casing was designed assuming
no internal pressure.

This method is a bit tedious to do with manual calculations, but can
be programmed to a spreadsheet calculation. And, there is also a table in
API 5C2 (Table 4) that already calculated values of reduced collapse for
certain values of tension.

8.5.3 Proposed API/ISO-Based Approach
The proposed new API/ISO formula for combined tension and compres-
sion begins something like the current API method as far as calculating a
reduced collapse strength, in that it first uses an equation to calculate a
reduced yield value. The equation for calculating the reduced yield is

(8.29)

It is the same as the equation we used to calculate the reduced yield
strength in the current API method with no internal pressure, equation
(8.26), although in a slightly different form. The reduced yield from this
formula then is used in equation (8.19) to calculate a reduced yield col-
lapse, which then is used in equation (8.17) to calculate a reduced
collapse strength without internal pressure. If there is internal pressure,
then a correction using equation (8.28) may be added. This internal pres-
sure correction is called a simplified method in ISO 10400 and gives
results to an accuracy of ±5% when . Outside that range,
one should refer to ISO 10400 for the more rigorous internal pressure cor-
rection method (currently listed in Appendix H of ISO/DIS 10400, 2004).
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Example 8–6 Example of New Collapse Formulas

We apply these new formulas to determine the reduced collapse rating of
the 7 in. casing in the previous example. In the section on proposed collapse
formulas, we calculated the wall thickness (0.453 in.) and the collapse value
without tension, which was 7650 lbf/in.2, so we do not repeat those.

Now, we use an axial tension of 42,000 lbf to determine the reduced
yield using equation (8.20):

Note again that this is exactly the reduced yield value we calculated using
the historic API method (with round off). This method differs from the
historic method in the manner in which the reduced yield is used once cal-
culated. The reduced yield value is then used in equation (8.17). We may
use the elastic collapse value of 16641 lbf/in.2 that we calculated before,
but we must calculate a reduced yield collapse value using equation
(8.19). We need not recalculate the elastic collapse value because it is
independent of the yield strength:
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Now, we plug this value and the elastic collapse value into equation (8.17):

This formula gives a reduction in the collapse value of 190 lbf/in.2, com-
pared to a reduction of 180 lbf/in.2 using the current API formulas. But,
the reduced collapse value with the new formula is 960 lbf/in.2 less than
the reduced value with the API formula, because the new formulas lead to
a lesser value of collapse in the absence of tension. All indications are that
the newer formulas are better, but until (and unless) they are adopted, the
old formulas remain the API standard.

�p k Y
t

d

t

do o
yld y=

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

= ( )( )⎛
⎝⎜

⎞
⎠

2 1
2

2 0 870 77650
0 453

7
.

.
⎟⎟ − ( )

⎛

⎝⎜
⎞

⎠⎟

=

1
0 453

2 7

8461

.

 lbf/in2

p
p p p p p p H

H

t

t
clps

elas yld elas yld elas yld

=
+ − −( ) +⎡

⎣⎢
⎤
⎦⎥

−( )

2
1

2
4

2 1

==
+ − −( ) + ( )( )( )⎡

⎣
⎤
⎦

−

16641 8460 16641 8460 4 16641 8460 0 164

2 1 0

2
1

2.

..164

7460

( )

≈  lbf/in2



290 Chapter 8—Casing Design Performance

8.6 Lateral Buckling
Much has been written over the years about lateral buckling of oil-field
tubulars. Some of it has been good, some a bit misinformed, and some
even has been ludicrous. Lateral buckling is called columnar buckling in
most areas of structural engineering, but lateral buckling of oil-field tubu-
lars differs from the common concepts of columnar buckling as it is
understood by most structural engineers. In most structural applications
where gravity is considered, the load on the column is at the top of the
column as opposed to the bottom. In those cases, gravitational forces tend
to contribute to the tendency of a column to buckle. In the case of oil-field
tubulars, the loading is a bit different. Usually, the top of the column
(casing or tubing) is fixed and the load is caused by a reactive force on the
bottom. The reactive force may be due to the weight of some portion of
the column resting on bottom, some pressure force on the bottom, or a
combination of both. Many refer to lateral buckling of casing as simply
buckling. However, collapse is a form of buckling called radial buckling.
There is also axial buckling, in which the casing is crushed in an axial
direction. And, we could include torsional buckling. This section is about
lateral buckling. Lateral buckling occurs when the casing becomes
unstable and displaces laterally disproportionately to the magnitude of a
very small lateral force.

8.6.1 Stability
The best way to visualize the concept of stability is with a simple and
commonly used illustration. In Figure 8–3, three balls are in equilibrium
on three surfaces. In case (a), a ball rests at the low point on a concave
surface. The ball is in static equilibrium; in other words, it will not move
unless some force is applied to it. If we nudge the ball with some small
force, it will move slightly then return to its original position as soon as
the small force, called a perturbation, is removed. Also note that to move
it further from its initial position requires an increasing force the farther it
is moved. This ball is in a state of stable equilibrium. In case (b), the ball
rests on a flat horizontal surface. It is also in a state of static equilibrium.
If a small force is applied, the ball will move. It will continue to move
with no requirement that the force be increased as in the first case. It will
stop when the force is removed, or if its environment is frictionless, it will
continue to move at constant velocity until another force is applied to stop
it or it falls off the edge of the surface. It will not return to its original
position, however. We call this case conditionally stable equilibrium or
sometimes neutrally stable equilibrium. The third case, (c), also is in
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static equilibrium, though, from a practical standpoint, we might have a
bit of trouble comprehending how someone could get a ball to balance on
the high point of convex surface. Nevertheless, it is easy to understand
that, if we apply even the smallest of perturbations to this ball, it will roll
off the surface. Once it starts to move, no additional force is required to
keep it rolling away from its static equilibrium point. We call this condi-
tion unstable equilibrium. This last condition is the type of instability that
concerns us with buckling of casing.

How does lateral buckling occur? If you consider the type of lateral or
columnar buckling shown in most engineering texts, you will see some-
thing like Figure 8–4(a). Typically, these are weightless columns with a
vertical load applied at the top and the bottom either hinged or fixed. The
initial buckling mode is in the form of a single curve, which is a portion of
a sinusoidal curve. Other modes are possible (usually at higher loads),
leading to sinusoidal-type configurations with increasing numbers of
nodes. These additional nodes are mostly theoretical, because once the
column buckles into a single curve, the other modes are not possible
unless some constraints are applied. A perfect beam with a perfectly
applied axial load (as is the case of our mathematical models) never
buckles laterally unless some perturbation is applied. In other words, we
could keep applying a load until the column yields in compression and
deforms axially in a plastic regime, until it is just a lump of metal on the

Figure 8–3 Equilibrium states: (a) stable,( b) neutrally stable, (c) unstable.

(c)

(a)

(b)
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ground. For instance, the equation for the elongation or compression of an
elastic tube is

Nowhere in that formula is any allowance for lateral buckling, because
there is no inherent instability in the formula itself. Lateral buckling has to
be determined in other ways. As to casing in a well bore, it usually is
fixed on bottom with cement and has lateral constraint in the form of a
bore-hole wall, Figure 8–4(b). Buckling in this case is affected by the
weight of the casing, and we see that only the lower part of the casing is
buckled, because the buckling is caused by axial compression at the
bottom due to the weight of the casing. As the distance from the bottom
increases, the axial compression decreases. When casing buckles in this
manner, it initially may be in the shape of a sinusoidal curve, with
decreasing frequency as the distance from the bottom increases, until a
point is reached where there is no buckling. It may be even more extreme
and form a helical shape in the well bore, with decreasing pitch as the dis-
tance from bottom increases. 

It would seem intuitive, then, that for lateral buckling to occur in
casing, it would have to be caused by a compressive load and some small
perturbation. For many years, it was assumed that, if casing was hung in

Figure 8–4 Examples of column buckling: (a) structural columns, (b) casing.
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tension throughout the full string or at least the portion of the string above
the top of the cement, then lateral buckling could not occur. That sounds
intuitively simple, and that was the assumption up until papers by
Lubinski (1951) and by Klinkenberg (1951) and several discussions of
those papers.

The Woods Model

In 1951, in a discussion of a paper by Klinkenberg (1951), Henry Woods
(1951) presented an example illustrating the neutral point in a simple
way that became something of a classic. It essentially showed that, con-
trary to popular intuition, lateral buckling could occur in casing in ten-
sion (under certain pressure conditions). Much of what had been done
previously was based on intuition. Woods, however, based his analysis
on the theory of elastic stability, using a thought experiment as illustrated
in Figure 8–5. A weightless tube is enclosed in a pressure device that has
two chambers. The tube itself is fixed at the lower end and is free at the
upper end but closed with a frictionless pressure seal in the top. There is
also a frictionless pressure seal on the outside of the tube, between the
upper chamber and lower chamber. The lower chamber, representing a
well-bore annulus, has a pressure po. Inside the tube the pressure is pi.
The top chamber has a pressure of pt. Woods said that the bottom
chamber is large compared to the top chamber and the tube is long
enough that its stiffness against bending is negligible. Also, the chambers
are large enough that the pressures in each chamber remains constant. He
then said, if one could apply a small lateral force to the tube in the large
chamber such that the tube would deflect laterally by a small amount,
then the top of the tube would slide downward some small amount .
The following volume changes would occur:
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Since pressure is in each of the places where volume changes occur, a
change in potential energy in each place is equal to the change in volume
times the pressure, and the total change in potential energy,  is given by

The last term contains the pressure acting on that cross section. This is
equivalent to the axial stress in the tube:

Note that the axial stress is a negative value, because the pressure is a
compressive stress. So, we can substitute the axial stress into the equation:

Figure 8–5 The Woods model for casing stability.
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For this system to remain stable, the change in potential energy must be
zero or positive: 

We could then write the stability condition in a number of ways, four of
which follow:

(8.30)

(8.31)

(8.32)

(8.33)

The last version was derived using the Lamé formulas. Recall that the
sum of the tangential stress and the radial stress is constant through the
wall of the pipe, so it makes no difference whether they are calculated at
the inner or outer wall, as long as both are calculated at the same point.
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What Woods’s model illustrates is the difference between the change
in potential energy by increasing the internal volume of the tube and
decreasing the annular volume. If the defection results in an increase in
potential energy, then the tube is stable, whereas if it results in a decrease
in potential energy, then it is unstable. If there is no change in potential
energy, then it is conditionally stable. Obviously, if the internal pressure is
sufficiently greater than the external pressure, then the system is unstable,
even if the axial stress is positive or in tension. Likewise with a sufficiently
higher external pressure, the system is stable when the axial stress is com-
pressive. This particular article by Woods turned around a lot of thinking
about landing practices for casing. His results have been generally
accepted.

General acceptance notwithstanding, there have been a number of
observations about Woods’ model as to whether it is applicable to real
wells. One of the biggest points of contention is that the tube in Woods’s
model is in compression and can never be in tension in that model. This
might, at first, appear intuitively obvious from a practical viewpoint, in
that the pressure in the top chamber cannot cause the tube to be in tension.
Remember though, that this is a thought experiment, and we can have a
negative pressure even though that is difficult to visualize. Look at
Figure 8–6, a schematic of a slightly different “test chamber.” The results
of this “version” of the Woods model are identical, showing the axial load
in the tube can be either tensile or compressive. It is the change in poten-
tial energy that determines the stability.

One of the most important concepts to come from the Woods model is
the concept of the neutral point as to lateral buckling. One interesting
aspect of the equilibrium points derived from this model is in equation
(8.32). That might look vaguely similar to something we saw in Chapter 2.
If we rearrange it slightly, it shows that, at the neutral point,

(8.34)

Now, it should look familiar, because the left-hand side is exactly the
effective load. So, at the neutral point for lateral buckling,

(8.35)

F A p A pz o o i i+ −( ) = 0
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The effective load is zero at the neutral point. It can be seen that the condition
of stability is exactly the same as the neutral point of an effective load curve
calculated using a buoyancy factor as opposed to a true axial load curve. The
neutral point in buckling is the point at which the effective load curve goes
from compression to tension; that is, the effective load is zero.

This worked fine for a long time in determining the number of drill
collars needed to keep drill pipe in effective tension while drilling with a
specified amount of weight on the bit. Then, in the 1960s, someone began
looking at the true axial load as we calculated it in Chapter 2, using
pressure and differences in cross-sectional area as opposed to weight in
air multiplied by a buoyancy factor. From this, it was determined that the
drill pipe was not all in tension but actually in compression above the drill
collars. This actually was published in textbooks of the day, and many
suddenly concluded that they had been “doing it wrong” all those years by
using a buoyancy factor, so they used the true axial load and consequently
added more drill collars. The rental tool companies thought this bit of
contemporary engineering was a good thing. But some began to ask the

Figure 8–6 An alternate version of the Woods (1951) model.
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question, if we had been doing it wrong all those years, why did it work?
Then, some began to notice that, if you used the true axial load method, it
showed that we needed drill collars to prevent buckling even when there
was no weight on the bit. Did this mean we needed drill collars even when
rotating off bottom? In terms of the true axial load, the neutral point for
lateral buckling is not the point where the true axial load goes from ten-
sion to compression. All this was known since 1951 and possibly long
before that, but along the way, someone got a bit confused. The fact is
that, if a tube in a well has a density greater than the fluid in the well, then
the hydrostatic force on the bottom of the tube and on cross-sectional area
differences cannot cause the tube to buckle. If the pipe is closed on the
end and its effective density, including the internal fluid, is greater than
the fluid in the well bore, it still does not buckle due to the hydrostatic
force on the bottom of the tube. The reason is that a hydrostatic force on
the bottom can act only along the axis of the pipe, whereas our common
examples of column buckling always have a load with a fixed direction. A
hydrostatic end force cannot support a bending moment if it is always per-
pendicular to the pipe axis. Now, the reason for that tedious example of
end moment due to hydrostatic pressure included in Chapter 2 was to
show that, even though there is an end moment on a tube that is not ver-
tical in a well bore, its effects essentially are negligible. Oddly, this
“hydrostatic buckling” phenomenon is something that seems to reappear
in the oil field from time to time. Many years ago, there were unbelievable
discussions as to the maximum depth to which a wire line could be run in
a well bore, because a vociferous few argued that, at some depth, the
hydrostatic pressure on the cross section of the wire would cause it to
buckle in the tubing. It was disproved then, but it resurfaced when floating
drilling rigs were first built. Some argued there would be a depth limita-
tion for free drill pipe because of the hydrostatic force on the bottom of
the drill string as depths increased. It is hard to imagine it could ever come
up again, but it is not the least uncommon, even today, to encounter
someone in the oil field who is under the impression that hydrostatic pres-
sure can cause lateral or helical buckling in a drill string or casing string.
Certainly, in the case of a tubing string in a sliding seal assembly, it can
happen, since the direction of the hydrostatic load is fixed, but not in the
case of a free casing or drill string whose density is greater than the fluid
in the well bore. So, all we need to determine whether or not a casing
string will buckle is an effective load curve and a formula for the buckling
load. And, the formula is where it starts to get complicated.
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8.6.2 Lateral Buckling of Casing
Structural buckling has occupied the minds of engineers for centuries.
Some engineers have and continue to base an entire career on the buckling
of a single type of structural element. One would think by now all the
problems would have been solved, yet buckling papers continue to be
published on what seems like a frequency of several per week. It truly is a
complicated topic, and there is always a different twist. Lateral buckling
of tubulars in wells has been a considerable topic for many years also. It is
a bit different from the structural engineer’s typical columnar buckling, in
that it is constrained by the walls of a bore hole. The first mode of lateral
buckling is something like a single curve, which may become sinusoidal
because of the bore-hole constraints and end conditions. In its most severe
mode though, it becomes helical in shape. Most of us have seen a perma-
nent helix in a recovered tubing string, work string, or tail pipe that was
abused beyond the yield point. 

For the most part, buckling of casing in well bores is not the problem
it is with tubing or drill pipe. The primary reason for this is that the clear-
ance between casing and the bore-hole wall is relatively small in most
wells. So, even when it is buckled, in many cases, the degree of buckling
is so small that there are few serious consequences. We are really serious
about preventing drill pipe from buckling. Why? Because we experience
drill pipe failure when the drill pipe buckles. Why does it fail? It fails
because of the rotation while in a buckled configuration. Drill pipe
seldom is harmed by buckling alone. It happens all the time in fishing
operations, for instance. It happens in the slide drilling of some horizontal
wells. But, unless the drill pipe is buckled to the point of yielding, it does
not hurt it as long as it is not rotated. What about small drill collars? Drill
collars do not buckle? Of course, they do. But when they do, they do not
suffer the same frequency of failure as drill pipe, because the degree of
buckling is limited by the annular clearance. (And, the connections
usually are properly made up, which helps a lot.) 

Casing is not drill pipe, and it is seldom rotated. So, what are the con-
sequences of buckled casing? There are several. If the buckling is severe
enough, the casing actually could yield or fail. This is rare and almost
always a consequence of some geotectonic activity, like subsidence, fault
movement, and so forth. And, it does happen in cases of high temperature
fluctuations. Those who work in these types of environments are not
likely to agree that damage is so rare. Less severe cases of buckling also
can have serious consequences. One is the possibility of extensive casing
wear in an intermediate string. Another is the difficulty of running and
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retrieving completion equipment in a buckled production string. So, for
these reasons, we try to avoid it. If we are using a slip-type casing hanger,
we have some control over the final axial load in the noncemented portion
of the casing string. We may even be able to take into account possible
thermal expansion and design our casing such that we can pull enough
tension to avoid buckling. If we are using a mandrel-type hanger, there is
not much we can do other than to try to support the casing with cement.
When the top wiper plug is bumped at the end of the cement job, we have
to live with whatever axial stress is in the noncemented portion. The final
motion with a mandrel hanger always is downward. One of the most
insidious forms of buckling can occur in a cemented section where there
is an interval of bad cement and we have no means of controlling the axial
load in the casing, no matter what type of hanger we have at the surface.
Serious problems have arisen when casing in one of these sections of an
intermediate string experiences increased temperatures from drilling and
circulation in higher-temperature zones below the intermediate casing. 

Buckling in a Vertical Well Bore

The published work on buckling of vertical structural columns could fill a
small library. The written work on the buckling of tubulars in a vertical
well bore could fill a shelf or two in that library. As interesting as all that
may be to some, it is of little practical consequence. That is why this is the
shortest section in this book. Real well bores seldom are vertical. If you
do have a vertical well bore and the effective load is in compression,
assume the casing will buckle; you do not need a formula. 

Buckling in an Inclined Well Bore

It is a bit more difficult for casing to buckle in an inclined well bore,
because gravity tends to hold it to the low side of the bore hole. It can start
to move to away from the low side, but the farther it moves, the more it
has to move up the side of the well bore. In one sense, it is like the ball
resting in the low point of a concave surface, but that analogy is only for
visualizing the gravitational effect; it does not tell us much about buck-
ling. Here is a formula for buckling in a straight but inclined well bore
(Dawson and Paslay, 1984): 

(8.36)

where
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This formula has been used successfully for a number of years. Possibly
the single biggest problem with it is that, almost everywhere the thing is
published, the units are inconsistent. So, if you use oil-field units with the
radii in inches, the buoyed specific weight of the pipe is in lbf/in. not lbf/ft
as is usually stated. In SI units, all length measures are in meters. Note
also that, as the inclination angle goes to zero (vertical well bore), the crit-
ical buckling load also goes to zero, implying that any compression in a
vertical well will cause buckling.

This formula works pretty well for casing, but it does not take into
account any well-bore curvature. Well-bore curvature was considered by
He and Kyllingstad (1993) and then later by Mitchell (1999) in the course
of resolving differing published formulations. This is Mitchell’s solution: 

(8.37)

where  is the average inclination angle over the short interval being
considered. Later, Mitchell advanced his study to include the effects of
couplings. In that paper (Mitchell, 2003), he recommended that the radial
clearance be calculated with the coupling radius as opposed to the pipe
body radius; that is, . 

One should remember that all lateral buckling formulas are approxi-
mate, at the very best. Some have sweeping assumptions that may or may
not be realistic. The two just discussed have been used extensively, and
they are reasonable. They do not account for the effects of torsion, connec-
tions, and so forth. Mitchell continues to work in the area of tubular buck-
ling in well bores and has taken some of those things into account. For any
one interested in the subject, his papers on the subject are a good source.
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8.7 Thermal Effects
So far we have not discussed temperature and how it affects casing
design, except in brief. We now look at two aspects of temperature effects
on casing, its magnitude and the change in magnitude.

8.7.1 Temperature and Material Properties
The engineering rule of thumb is that we do not consider temperature
effects on most metals until the temperature exceeds 50% of the melting
temperature of the metal; that is, . That makes us pretty safe in
terms of casing in all but the most extreme applications. API grades of
steel are affected by temperature, but in most cases, they still retain at
least 90% of their yield strength up to around 700° F (~370° C). Some
charts regarding this are shown by Holliday (1969) to give you an idea.
There is no universally accepted threshold temperature at which one
should start down-rating the yield strength due to temperature, although
some companies definitely have their own standards. I am not about to
recommend a threshold temperature, but certainly at some point, one
should definitely consider reducing the yield value of casing to around
90% or so. Geothermal and steam injection wells, for instance, not only
have high temperatures but also large changes in temperature. Those types
of wells are not considered here.

8.7.2 Temperature Changes
The thermal consideration in most wells is not the temperature per se but
the change in temperature. Temperature change causes casing to expand
or contract. When casing is run in the hole, the mud has been in a static
condition for several hours before the casing reaches bottom. The temper-
ature of the mud may or may not be close to an equilibrium state,
depending on how long circulation has been static, but in most wells it is
relatively close to static equilibrium. Once casing is on the bottom and
circulation begins, it usually gets further away from the static thermal
equilibrium state again. Much depends on the difference between the sur-
face and down-hole temperatures. As circulation continues, the lower part
of the hole normally is cooled below its static temperature and the upper
part of the hole is warmer than its static temperature. Once the cement is
in place and circulation ceases, temperatures begin to return to the static
thermal equilibrium state. We normally assume that the cement sets at
some time before normal static equilibrium is reached. There may be
added axial compressive stress in the lower part of the casing as it warms,
and there may be added tensile stress in the upper portion of the well as it

T Tm≥ 0 5.
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cools. This amount of stress generally is ignored in most casing design,
and in most cases, it likely is nowhere near any critical value. When we
start to produce the well, though, the casing is exposed to a different
thermal profile than it experienced before. Now, fluids from the formation
travel up the hole and warm the upper part of the casing. No cooler fluids
circulate downward from the surface to offset the warming. More of the
casing in the upper part of the hole expands, and the axial stress change is
toward compression. Whether it actually goes into compression or not
depends on how much tension was in the pipe initially and how much the
temperature increased. 

We can show the effects of temperature change on uniaxial stress in
casing with a one-dimensional version of Hooke’s law:

(8.38)

where

In general, both the elastic modulus and the coefficient of thermal
expansion are functions of temperature. Within a limited range, they are
sufficiently constant that we assume them to be so here. With that
assumption, this equation looks straightforward, and it is.

However, temperature effects are not always intuitive. For instance, we
can say that a temperature change can cause a strain without a causing a
stress, and it can also cause a stress without a strain. Look at Figure 8–7(a).
A metal bar (or casing string) is suspended from the top end and free at the
lower end. If we heat that bar by some amount, , then it is going to
expand and get longer; that is, we induced a thermal strain in that bar. But,
have we changed the stress? No, we have not. In this case, the measured
uniaxial strain is equal to the thermal strain; that is, , so the stress
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in the bar at any point has not changed, it still is equal to the initial stress,
, which in this example is the body force due to gravity.
Now let us look at the bar in Figure 8–7(b). This bar is constrained at

both ends. If we apply the same temperature change to this bar, it tries to
expand, but it cannot (we will assume it does not buckle laterally). The
bar has not gotten longer, so we have not caused any strain; that is, .
But, have we changed the stress in this bar? Absolutely. We changed it by
the amount, , a negative value, since the change in stress is com-
pressive. What we see here is that the product of the coefficient of thermal
expansion and the change in temperature, , is something like an
“effective strain.” In the uniaxial case, it was relatively simple, and we can
use this simple equation to calculate changes in axial stress in casing if we
know the magnitude and the end conditions. It begins to get a bit more
complicated in three dimensions:

(8.39)

If you read the previous chapter, this should make sense to you. The tem-
perature affects the stress only in the principal coordinate directions. For
composite materials, this gets much more difficult, in that the thermal
coefficient is not necessarily the same in all directions nor is the elastic
modulus. One additional thing we might mention so that you do not go

Figure 8–7 Thermal effects: (a) suspended bar, (b) constrained bar.

ΔT

(a) (b)

σo

ε = 0

−E TαΔ

αΔT

σ σ ε δ αij ij
o

ijkl kl ijC E T= + − Δ



8.7  Thermal Effects 305

through life thinking that things are too simple. In the unconstrained bar,
we said no stress is caused by heating the bar. That is true only if the bar is
thin and heated slowly, so that the temperature is uniform throughout the
bar. If it is thick and we heat it rapidly or locally, then we induce some
amount of stress within the bar. And we actually can heat it locally so fast
that the thermal stress cannot accelerate the mass of the rest of the bar fast
enough to prevent the bar from yielding plastically before it can expand.
This sort of thing can happen in hypersonic flight vehicles but, fortunately
for us, not in casing.

In casing design, thermal effects usually lead to a situation of com-
pression (note the negative sign in the Hooke’s constitutive equation).
That is something we are not accustomed to seeing in basic casing design,
except in bending and bore-hole friction in inclined wells, which we cover
in the next chapter. To determine the thermal effects in casing, we must
know a number of things that we do not consider in most wells. The major
thing we need to know, obviously, is the change in temperature. This can
be measured in actual wells, but we also can use a heat transfer software
model to estimate it. We must also know if the casing is free to move or
not, and this we often do not know and cannot determine except at the
wellhead and top of cement (where we assume it is not free to move). We
already looked at the effect of changing pressure on axial stress when the
pipe is constrained at the ends, and we might have to incorporate that into
our thermal stress calculations, too. The best way to illustrate the thermal
stress is with examples, where we can see the assumptions we must make
along the way and how we might decide the question as to what additional
data we require for a particular application. First, let us use the bar in
Figure 8–7(b). Let us assume that, initially, the bar is at a constant temper-
ature throughout its length. Let us also assume that it was hanging by its
own weight before the lower end was constrained. Say, its cross-sectional
area is 7.55 in.2, its specific weight is 26 lbf/ft, and its total length is
10,000 ft (yes, it is 7 in. casing). The tensile force at the top is

and, at the bottom, it is zero. If we set our z-coordinate axis at the top with
a positive direction downward, then the axial stress at any point is

F wo = = ( ) =� 26 10000 260000 lbf
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where  is the cross-sectional area of the bar (or tube). Now, if we apply
a constant temperature change to this bar, we can calculate the axial stress
at any point by

since , because the bar is constrained. If we change to temperature
in the bar by increasing it 100° F, the axial stress at the top is7

At the bottom, the axial stress is

The bar is in compression at the bottom and in tension at the surface, although
the tension at the top now is less than before the temperature change. 

7. The coefficient of thermal expansion for casing is 0.69 × 10-5/° F or 
1.24 × 10-5/° C.
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Example 8–7

Suppose we have a well with a string of 7 in. 26 lb/ft L-80 casing in a ver-
tical well. The top of the cement is at 10,000 ft, and the well is perforated
in a zone at 14,000 ft. After the cement sets, the hook load is 275,000 lbf,
and we calculate the true axial load at the top of the cement is 13,000 lbf.
We pull an additional an additional 50,000 lbf on the casing above its
hook weight and set it in a slip-type hanger. We run a shutin temperature
survey in the well and find the temperature at the top of the cement is
220° F and its gradient is linear to a surface temperature of 70° F; that is,

, where  is the vertical depth. Below that point, we find
that the formations are much hotter, and the temperature at 14,000 ft is
370° F. To keep this simple, let us say that our heat transfer model predicts
that, with the anticipated production rate, the heat transfer will reach a
near steady state with a temperature increase of 150° F uniformly along
the casing string. We ignore any stresses caused by any temperature
change between the time the cement set and the temperature survey was
run and any effects from the possible expansion of fluids in the annulus
outside the 7 in. casing, although expansion of trapped fluids is not some-
thing we can ignore in many cases (see Halal and Mitchell, 1993). We
also assume that the pipe stays straight and does not buckle. The cross-
sectional area of our casing is 7.55 in.2.

We would like to determine the following.

1. The axial stress in the casing at the top of the cement.

2. The axial stress in the casing at the surface.

3. The amount of tension at the surface to avoid any compression in 
the casing due to the temperature increase during production.

Since the casing is constrained at the top and the bottom (wellhead and
cement), there is no axial strain due to the change in temperature. The
axial stress at the top is

T h= +70 0 02. h
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and, at the top of the cement, it is

The top of the casing is still in tension, but the bottom is in compression.
What is the magnitude of the compressive force at the bottom?

Suppose we are concerned about buckling. What amount of tension
should we pull so that the casing does not go into compression at the top
of the cement with this amount of temperature change?

Assuming we use proprietary couplings with a higher tensile strength, the
pipe body yield of this casing is only 604,000 lbf, leaving us with a tensile
design factor of about 1.22, which is very low. If we down-rate the yield to
90%, as mentioned earlier, then we must look at other options. Addition-
ally, we must consider whether our wellhead and conductor would support
that amount of weight. We actually might have to live with some amount
of buckling in the lower section of this casing string. In that case, we also
have to determine the limit of our connections in compression near the
bottom. There are no formulas for determining the compression strength of
API connections. Some manufacturers of proprietary connections have
compression strength data for their couplings, although that information
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usually is not published. See Jellison and Brock (2000) for a discussion of
connections in compression. An alternative approach would be to bring the
cement higher to a point where the casing tension is greater, but one also
must consider that cemented casing is not necessarily immune to coupling
failure in compression with large temperature increases. 

The preceding is a simple calculation, and you will note, we made a
lot of simplifying assumptions. We did not consider any inclination and
friction in the bore hole that would resist pipe motion, and we assumed
that the temperature change would be constant along the entire length of
the string. However, we can use simple calculations like that to spot-check
thermal stresses at various points to determine if we need a more in-depth
investigation.

8.8 Closure
We covered a lot of ground in this chapter. Some topics we covered in
more detail than others. This is not to slight any particular topic, but the
material in this chapter easily could constitute a separate book. In the next
chapter, we look at inclined and curved well bores. Much of what was
covered in this chapter and the previous one will carry over into it and will
be further explained as to how it applies in those circumstances.
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CHAPTER 9

Casing in Directional and 
Horizontal Wells

9.1 Introduction
Many wells drilled each year are directional wells, and an increasing
number of those are horizontal wells. In one sense, all wells are inclined
to some degree, and the phenomena we are about to discuss affect them
too, even though we usually ignore them when it comes to casing design
for “vertical” wells. We are now ready to consider wells in which these
phenomena cannot be ignored. What are they? There are principally two:
bore-hole friction and bore-hole curvature. 

Simply put, bore-hole friction affects the axial load in casing by
resisting its motion. An upward motion of the casing increases the tension,
and a downward motion decreases the tension. If the casing is rotated, this
too adds a torsion load to the casing—something we never consider in
basic casing design. Bore-hole curvature causes bending stresses in casing.
This stress was ignored in most casing designs, that is, until horizontal
wells began being drilled. Even then, it is surprising how many casing
strings are still designed for horizontal wells that do not take bending into
account, possibly because the bending stress magnitude is not understood
to be significant. For example, a string of 7 in. K-55 casing run through the
build section of a medium-radius well with a radius of curvature of 300 ft
will have a bending stress amounting to over 50% of its yield strength, and
that does not account for additional stress from friction, gravity, or pres-
sure. Bending stress is not insignificant in horizontal wells.

In this chapter, we look at bore-hole friction and curvature and their
effects on casing design. We also consider combined loads in directional
wells with some examples of how we do the calculations.
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9.2 Bore-Hole Friction
Friction is a resistance to motion between two bodies or media. We all
studied it in basic physics or engineering courses and learned a so-called
friction law for rigid bodies. It is not a law of physics at all, but you might
not guess that from the way it is often presented in basic physics texts.
Friction is quite complex by its very nature, and the simple friction rela-
tionship most of us learned does not hold up well in many real-life
situations. However, it is a simple relationship, and it works well enough
for numerous practical applications.

9.2.1 The Amonton-Coulomb Friction Relationship
The simple friction relationship is often referred to as the Coulomb fric-
tion law or a bit more accurately as the Amonton-Coulomb friction law. It
was originally the outcome of two postulates by Amonton in 1699 and has
been understood in its present form since about 1790, when Coulomb
added a third postulate to it.

• Frictional force is proportional to the weight of the body being 
moved (Amonton, 1699).

• Frictional force is independent of the apparent contact area 
(Amonton, 1699).

• Frictional resistance is independent of the sliding velocity 
(Coulomb, 1790).

That is the simple friction relationship we all learned and is stated
mathematically as

(9.1)

It says that the frictional force is less than or equal to a friction coefficient
multiplied by the normal contact force, normal meaning perpendicular to
the contact surface. The relationship is necessarily an inequality, because
the product of the friction coefficient and the normal contact force is equal
to the frictional force only when the force opposite the friction force is
equal to or greater than that product. In other words, if the force applied to
generate motion of a body is less than , then the frictional force is
equal to the applied force and not that product. Once the body is in
motion, the friction force is equal to  and independent of the applied

F N≤ μ

μN

μN



9.2  Bore-Hole Friction 315

force, as long as the motion is sustained. In 1699, Amonton was con-
cerned with objects sliding on a level surface, so he used weight instead of
contact force in his postulate.

What are the assumptions in that relationship? There are several, and
they often are not mentioned in basic texts.

• The contact surfaces are smooth.

• The contact surfaces are dry (uh, oh!).

• The contact surfaces do not deform.

• The friction coefficient is a constant, that is, not affected by the 
heat generated.

We could add more, but that about covers the areas of our interest. We
should discuss these limitations briefly. 

When we require that the surfaces are smooth, we are talking about a
matter of scale. On a microscopic scale, even smooth surfaces are not
what we would consider smooth. There are numerous asperities that are
elastically deformed, plastically deformed, fractured, melted, fused, and
so forth, as two surfaces slide relative to one another. But these micro-
scopic asperities are small compared to the entire surface area, and the
distribution of the asperities on the smooth surfaces is relatively uniform.
For example, if we could drag an object the size of an Egyptian pyramid
through the Grand Canyon, we could not model the resisting force with
Amonton-Coulomb friction because the “asperities” of the Grand Canyon
are on a similar scale to the pyramid-sized object. However, if we had two
geotectonic plates sliding over each other, we might model the friction
with the Amonton-Coulomb relationship, because asperities the size of a
large canyon or a pyramid are relatively small compared to the surface
contact area and thickness of geotectonic plates. Casing sliding in a well
bore is generally on a scale that allows the use of such a relationship. 

What about deformation of the contact surfaces? Suppose we have a
string of casing with LT&C couplings and a string of identical-weight
casing with tapered integral connections. Which is going to slide in the
hole (or out of the hole) easier? No question about it, the casing with the
tapered connections will slide easier than the casing with the square
shouldered couplings, even though both may have identical contact force.
The friction relationship does not account for couplings gouging a bore-
hole wall. But again, that is a matter of scale, since a long string of casing
has many connections (asperities?) of uniform size. Their gross effect
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might be legitimately included in a friction coefficient. In other words, the
coupling shape can be accounted for by the friction coefficient if we are
considering numerous joints of casing. 

What can we say about the effects of lubrication? Can the Amonton-
Coulomb dry-friction relationship work for lubricated surfaces? In gen-
eral, the answer is no, but again it depends on scale and the accuracy
desired. If the lubrication is consistent, the dry-friction relationship can
give reasonably practical results. By consistent, we mean that the friction
coefficient does not vary significantly with contact force. The walls of a
well bore usually are covered by a filter cake and the bore hole contains
some type of liquid drilling fluid. This provides considerable lubrication
as the casing slides along the well bore. If the casing couplings scrape the
filter cake off portions of the wall as it slides, that changes the friction
coefficient; in other words, the friction coefficient may increase in those
areas. Another thing that may happen is that, with removal of some of the
filter cake, the casing in contact with permeable formations may tend to
be forced harder against the wall due to the difference in hydrostatic pres-
sure in the well bore and formation. In this case, the contact force has
increased. We may reasonably account for some of these things by
lumping all we do not know into some average friction coefficient. The
one problem we may encounter, though, is that the friction coefficient
may vary with pipe diameter and weight.

The single question that most often arises about the Amonton-
Coulomb relationship concerns the postulate that the frictional force does
not depend on the apparent area of contact. If that is true, then why do
racing cars have wide tires rather than narrow? The simple answer is that
the postulate is true, but racing tires are much more complicated. Briefly,
the crux of the matter is the last qualification mentioned, is the one
regarding heat. For the most part, a narrow tire of the same composition
gives the same frictional resistance on a given race car as a wide one—at
low speeds. At high speeds, several things come into play, and heat is a
major one. Wide tires distribute the heat over a larger area, and the heat is
dissipated to the atmosphere more quickly. There is also the matter of
wear or ablation of the tire. A narrow tire with a much smaller area of
compound in contact with the track wears in its radial dimension much
faster than a wider tire. In fact, a narrow tire might make only a few laps
before it would have to be replaced. On a wet track, racers have to switch
to grooved tires, which actually reduce the contact area. This is a matter
of hydrodynamics, where the narrower contact areas tend to cut through
the lubricating layer of water, whereas the slick tires tend to “float” on top
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of it. A volume could be written on racing tire performance. That is totally
off the subject, but it comes up in almost every discussion of the
Amonton-Coulomb friction relationship, so that is why we address it. Still
on the issue of heat, a good example of a breakdown of the simple friction
relationship is automobile brakes. This is a practical example of heat
affecting the friction coefficient significantly. Brakes are said to “fade”
when they get hot, in other words the friction coefficient is reduced with
heat. That is true in most cases of friction. Fortunately, we generally need
not be concerned about the heat of friction affecting the motion of casing
in a bore hole. It can affect casing wear, however.

Most of the preceding discussion on the limitations of the Amonton-
Coulomb friction relationship has to do with linearity. In other words, the
assumption of the relationship is that the friction coefficient is a constant.
As long as the friction coefficient is not a function of the contact force,
equation (9.1) is simple and easy to use. Also, we easily can see that, if we
change our mud properties to reduce the friction coefficient by 25%, for
instance, then we also reduce the frictional force by 25%. Likewise, if we
reduce the contact force by some amount, we also reduce the friction
force by the same amount. Or, if we change our casing design by
increasing the wall thickness of the casing in a horizontal section of a
well, we increase the friction force in that part of the hole proportionally.

Before we leave this friction relationship, there is one other important
point to cover. When most of us learned the simple version of friction, we
were taught that two friction coefficients apply to a particular problem, a
static friction coefficient, , being the larger, and a kinetic friction coeffi-
cient, , being the smaller. That means the force to initiate motion is
greater than the force required to sustain the motion once initiated. Which
do we use for casing design? It would seem obvious that a static friction
coefficient is more realistic, since motion of the pipe ceases and initiates
for each connection in the casing string. This might not seem worth the
concern, if we are considering the running process, but if we are going to
reciprocate the casing while cementing or if we encounter an obstruction in
the bore hole before reaching bottom and have to pull the casing out of the
hole, it is a serious concern. The caveat about static friction coefficients is
that they problematic except for rigid bodies. We see an example of that on
the rig weight indicator all the time. When pipe is picked up off bottom we
see the weight indicator increase gradually until some maximum point is
reached, then it drops back to a slightly lower value. That pretty much
seems to confirm what we have been taught, but reconsider what we really
observe. There is more to this than what we might at first think. When the

μs

μk
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driller starts to pick up the pipe, we see it moving through the rotary as the
weight indicator reading increases. Some of the pipe already is moving
before we reach the peak load. And, before the final peak is reached, a lot
of the pipe is moving. The pipe is not a rigid body like the simple objects
we encountered in basic friction applications. Once the entire string of pipe
is in motion, the situation is fairly simple, since it is moving more or less as
a rigid body and an approximate kinetic friction coefficient pretty much
predicts the resistance to motion. But, what about the initiation stage?
What is going on there? Obviously, if some of the pipe is in motion, we
cannot assume a single static friction coefficient and apply it to the entire
string. This brings up a basic flaw in the Amonton-Coulomb friction rela-
tionship. Suppose we have a rigid body with a total weight, , resting on
a flat surface, as in Figure 9–1. We apply a gradually increasing force, ,
to the body, and the friction force, , resists motion. 

As  increases so does the value of , which is equal to , until it
reaches its maximum value, . As  continues to increase, the
value of the friction force decreases suddenly to its maximum dynamic
value of . It remains at that value as long as .
This is shown in Figure 9–2.

An extensible body does not behave like that. Suppose now, we model
the same body with four pieces instead of one and connect them with
weightless springs to simulate extensibility. The total weight is the same,
but each segment now weighs one fourth the total. This is illustrated in
Figure 9–3. 

We stipulate that initially the segments are static, and there is no load
in the connecting springs. In this case, as we apply a force, , we see
that initially the only body acted on until motion is initiated is the one on
the left. No force is transmitted to the next segment until the first one
moves. As the static friction in the first segment is overcome, the friction
force drops back to the kinetic value. As we continue to increase the

Figure 9–1 A rigid body of weight, W, at rest on a flat surface.
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force, , the same thing takes place successively in each of the other seg-
ments, but when the final segment is set in motion the total difference
between the maximum static friction force and the maximum dynamic
friction force is only one fourth that of the previous rigid body example.
The friction force for the segmented example is shown in Figure 9–4.

Figure 9–2 Static friction force increases until motion is initiated, then changes 
to a kinetic friction force.

Figure 9–3 Extensible body model.

Figure 9–4 Friction force in a segmented body.
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Now, suppose we divide the body into an infinite number of segments
attached by weightless springs. We could say that the difference between
the static friction and dynamic friction disappears altogether, and it does,
at least in this model. However, some would argue that the weight of each
segment goes to zero; and while that argument may at first seem valid, it
does not affect the limit. Since the static friction coefficient is greater than
the kinetic friction coefficient, we can show the friction force at any time
as the sum of the segments in motion times the kinetic friction coefficient
plus the weight of one static segment times the static friction coefficient.

(9.2)

where  is the total number of segments,  is the number of seg-
ments in motion, and  is the number of static segments. We can take the
limit of the friction force as the number of segments goes to infinity:

(9.3)

That may be a bit over simplified, but what we have shown is that, for an
extensible body, a static friction coefficient does not exist in the context of
the linear Amonton-Coulomb friction relationship. This is not to say that
a static friction coefficient does not exist even though all bodies are exten-
sible to some degree, but that there are serious deficiencies in the linear
Amonton-Coulomb friction relationship in regard to extensible bodies. It
also points out that, for casing in a well bore, we cannot assume some
value for a static friction coefficient, as with a rigid body, and use it with
any degree of predictable accuracy. 

So, as to calculating casing loads with friction, we are pretty comfort-
able with a kinetic friction coefficient. We know that it will take more
force to initiate motion, but to determine a static friction coefficient for a
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particular well generally is not addressed because it is not possible. All
we can truthfully say is that we require some amount of force greater than
the kinetic friction force to initiate motion in a casing string that has come
to rest. Another thing that we may notice in many well bores is that the
initiating force often increases with time. That usually is a sign of differ-
ential sticking, which in terms of friction translates into increased contact
force rather than a different friction coefficient. In many such cases, the
friction coefficient becomes a catchall for all those things we cannot
quantify otherwise. 

There is another important concept to understand when dealing with
directional wells: There is some critical inclination angle at which a body
is at static equilibrium with movement impending. In engineering terms,
this is known as the angle of repose, except in that case the angle is mea-
sured from horizontal. Since we measure inclination from the vertical, we
simply call it a critical inclination angle (see Figure 9–5), meaning that
any casing in the well where the inclination is greater than this value will
not slide under its own weight; that is, it has to be pushed into the hole. 

The critical inclination angle depends on the friction coefficient, and
it can be derived as follows:

(9.3)

Figure 9–5 Critical inclination angle.
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(9.4)

Since we know the friction coefficient only approximately, this formula at
best gives us an idea as to where in our well bore the casing will cease to
slide due to its own weight. For example, if the friction factor is 0.4, then
the critical inclination angle, . We know, then, that we cannot
expect the casing to slide due to its on weight and must be pushed any-
where the inclination exceeds 68° . All of us have seen similar limiting
values in relation to wire line logging tools. 

9.2.2 Calculating Bore-Hole Friction
A number of commercial friction software models on the market calculate
bore-hole friction, probably to the point that hardly anyone cares how
they work as long as they give reliable results. One does not really have to
have software, since the calculations can be done manually, although it is
a tedious process. In addition to the tedium, doing bore-hole friction cal-
culations manually is error prone, in that if an error is made, it carries
through to all the subsequent calculations. One can fairly easily program
one of the models into a spreadsheet and get results as accurate as any
commercial software, although the commercial software has numerous
options to make life much easier.

Some assumptions are common to all the current models for bore-hole
friction:

• The Amonton-Coulomb friction relationship is valid.

• The tubular string is a rigid body in translation.

• The tubular string is a rigid body in rotation.

• The tube has no bending stiffness.

• The tube is in contact with the bore hole everywhere.

The first assumption already has been discussed adequately. The second,
third, and fourth assumptions are referred to collectively as the soft string
assumptions. None of them is true, but that needs explanation. If the entire
string is in translation or rotation, it does not matter if it is extensible or
not because we are primarily interested in the value of friction when the
entire string is in translation or rotation and not some intermediate values

α
μc = −tan 1 1

αc = 68o
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when only a portion of the string is in motion. The fourth assumption is
that bending the pipe around a curve does not add to the contact force. In
other words, the contact force required to bend the tube is ignored. This is
reasonable for drill pipe in most cases, and even for casing in most situa-
tions, so we can generally accept this assumption. Some of the commer-
cial software now includes contact force due to bending stiffness. The
fifth assumption, regarding discontinuous contact, might be questioned,
however. Without better data than we currently get regarding the bore-
hole path and shape, it is not possible to determine where the pipe is in
contact with the bore-hole wall and where it is not. This is not a serious
limitation, though, because of the first assumption in the list. Since the
Amonton-Coulomb friction relationship is independent of the area of con-
tact, the portion of the pipe that is not in contact is accounted for in the
contact force where the pipe is in contact. From a practical standpoint, the
current torque-and-drag software works quite well. 

Most of the commercial software is based on the model of Johancsik,
Frieson, and Dawson (1984), which is a difference equation that uses the
buoyed specific weight of the pipe in its calculations. The result is an
effective axial load. Another model was formulated by Sheppard, Wick,
and Burgess (1987). It is in the form of a differential equation and it ulti-
mately produces the true axial load, with the effective axial load as an
intermediate step. One might question why the commercial models use
the former instead of the latter. It was published first, it is easy to pro-
gram, and not many people use the true axial load for casing design in
directional wells, because the unfortunate truth is that many do not know
the difference. When programmed, the second model actually does the
same thing in terms of buoyed specific weight and results in an effective
axial load, but it also shows how to take that result one step further to cal-
culate the true axial load. The issue is inconsequential from a practical
standpoint, in that both models produce the effective axial load and one
goes a step further to produce the true axial load. The true axial load for-
mulas of Sheppard et al. may also be used with the Johancsik et al. model
results to determine the true axial load. The differential equation of Shep-
pard et al. is not solvable in closed form, except in the case of a single
plane, that is, constant azimuth, and the assumption that the bore-hole
curvature is that of a segment of a circle between survey points. (A circle-
segment well path between surveys is the basic assumption of the
minimum curvature method currently used in directional drilling.) How-
ever, the single-plane, or 2-D, closed-form solution is of little practical
use, because it can be used only for idealized single-plane well paths and
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it results in two closed-form equations. This is because, at points where
the contact is on the high side of the hole, the gravitational force subtracts
from the contact force, and when the contact is on the low side of the hole,
the gravitational force adds to the contact force. An incremental calcula-
tion method must be used to determine when to switch from one solution
to the other. A number of tests were done using the closed-form solution
to test the accuracy of numerical techniques for solving Johancsik et al.’s
difference equation and Sheppard et al.’s differential equation. A simple
incremental method was used in Johancsik et al.’s equation. An Euler
method, a second-order Taylor series, and a fourth-order Runge-Kutta
method were used for solving Sheppard et al.’s differential equation. As it
turns out, the simple incremental method gave almost identical results
with the difference equation as the more sophisticated fourth-order
Runge-Kutta method for the differential equation, when the same number
of increments were used. The Euler method never approached the order of
accuracy of the other methods, even with twice the number of increments.
The net result is that a simple incremental solution to either equation gives
acceptable results, as long as one uses a sufficient number of subintervals
between survey points. The following is the differential equation of
Sheppard et al.:

(9.5)

where

The first term on the right is the gravitational contribution to the axial
load, and the second term is the frictional contribution, that is, the friction
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coefficient multiplied by the contact force. The  sign is determined by
whether the pipe motion is into the well (negative) or out of the well (pos-
itive). Two things to note about this equation are that the axial load
appears on both sides of the equation and the contact force always is
positive. In a straight section of bore hole, the axial load is dependent on
the contact force, but the contact force is not dependent on the axial load.
In that case, the axial load disappears from the contact force term. In a
curved bore hole, the axial force is dependent on the contact force as in a
straight section , but also the contact force is dependent on the axial load.
The differential equation may be solved numerically as an initial-value
problem using a second-order Taylor method or a fourth-order Runge-
Kutta method. As previously mentioned, an Euler method does not give
very good results, even with a significantly greater number of increments.
An incremental formulation of the Sheppard et al. equation gives equally
good results as the more sophisticated Taylor and Runge-Kutta techniques
with sufficient number of increments. The initial condition at the bottom
of the hole is  which accounts for any weight set on bottom.
The incremental form is

(9.6)

where the contact force is given by

(9.7)

In this last equation, the angle measurements must be in radians. (When
angles appear in formulas outside of trigonometric functions, they are
almost always in radians.) The numbering of the nodes starts at the
bottom of the hole with node 0 and proceeds to the top as seen in
Figure 9–6.

Using these formulas one may write a simple spreadsheet program to
do the calculations of bore-hole friction for casing design. 

±

ˆ ˆF Fo0( ) =

ˆ ˆ ˆ cosF F s s w Nn o i i i
i i

i i
i

n

= + −( ) +⎛
⎝⎜

⎞
⎠⎟

±
⎡

⎣
⎢

⎤

⎦
⎥−

−

=
∑ 1

1

1 2

α α
μ

N s s

w F
s s

i i i

i
i i

i
i i

i i
= −( )

+⎛
⎝⎜

⎞
⎠⎟

+
−

−
⎛
⎝⎜

⎞
⎠⎟

−

−
−

−

−

1

1
1

1

12
ˆ sin ˆα α α α⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
−

−
⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤
−

−

−

−

2

1
1

1

1

2
ˆ sinF

s si
i i

i i

i iβ β α α

⎦⎦
⎥
⎥

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

2



326 Chapter 9—Casing in Directional and Horizontal Wells

To convert the values of effective load at any node to true load, one
may use the formula from Chapter 2:

(9.8)

There are times when we might consider rotating the casing while
cementing. This is not often done in highly inclined or horizontal wells
because of the significant amount of friction. However, if it can be done at
a torque less than the maximum recommended makeup torque of the con-
nections, then there is a possibility of doing it. After all, getting a good
cement job in a horizontal well is difficult enough as is, and everything we
could do to displace the mud is worthwhile. The differential form of the
torsion equation is

(9.9)

Figure 9–6 Node numbering system for bore-hole friction calculations.
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where  is the radius of the casing. This is also a one-dimensional differ-
ential equation with the boundary condition,  at the bottom of
the tube, although that would be zero for most casing strings. We could
solve this initial-value problem using a second-order Taylor method or a
fourth-order Runge-Kutta as previously mentioned. We could just as
easily cast this equation in an incremental form, where it becomes

(9.10)

and the normal contact force is calculated by

(9.11)

In this case, the axial load used to calculate the normal contact force is not
itself a function of the contact force, so it may be calculated separately for
use in equation (9.11) from

(9.12)

An incremental approach such as this and the one for sliding friction are
used in most commercial software. And, as previously mentioned, numer-
ical techniques do not give better solutions when applied directly to the
differential form as long as a sufficient number of increments are used. 

The drawbacks to using these models for casing design are the lack of
actual friction coefficients and the idealized well plan as opposed to the
actual hole as drilled. There are no tables of values in which to look up
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friction coefficients for bore holes. There are some average values for
water-based drilling fluids: 

• 3.0–4.0 for an open hole. 

• 2.0–2.5 for a cased hole.

If one were using an oil-based mud, those values might be reduced by
30–50%. In practice, measurements of the actual hook load are made in
the field, and the values are plugged into a commercial torque-and-drag
model, which iteratively finds a friction coefficient that gives results
matching the field measurements. This is of great benefit during drilling
operations but of little use if the casing is being designed before the well
is drilled, unless one has data from previously drilled wells. Even if we
have the correct friction coefficient, the next problem facing the casing
designer is the well path.

In a conventional L-shaped horizontal well, for instance, the vertical
portion of the well plan is exactly that—vertical! There is no friction in
that portion of the hole according to the models. And the rest of the hole
also is totally smooth with no wobble. The actual hole is quite different,
there is friction in the “vertical” section, and none of the rest of the well is
quite as smooth as the planned well path. How do we deal with that? One
possibility is to use the data from a similar well with some possible
adjustments. Some commercial software have a way to impose some tor-
tuosity on the planned well path in the form of a sinusoidal curve some
type of random “noise” curve. Both are good, but they require some expe-
rience to know how much tortuosity to use. One other method is to add an
inclination of a few degrees to the “vertical” section of the plan and use a
“high” friction coefficient for casing design. Figure 9–7 shows the calcu-
lated true axial load for upward motion of 5½ in. casing in a well plan and
the true axial load in this well as it was actually drilled. 

For most wells, it is not critical what method is used, as long as it is
recognized that one cannot use a perfect well path plan to design a casing
string for a real well. Long-reach and high-pressure wells may require a
lot more planning and even considerable effort to drill the well as nearly
smooth and close to the planned path as possible.

The result of the friction calculations just discussed is a load curve
similar to Figure 9–7 that we would employ for designing our casing
string for tensile loads. In that particular curve, the friction is calculated
for an upward motion of the casing string once on bottom, similar to what
we would expect if reciprocating the casing while cementing. We can plot
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these curves either in terms of effective axial load or true axial load,
depending on how we intend to design our casing string. If we expect to
rotate the casing while cementing, we would also want a plot of the
rotating torque from friction, so that we might verify whether or not the
connections of our string will permit rotation. Maximum recommended
makeup torque generally is the limiting factor in rotating most casing
strings. The main point here is that, in highly deviated wells, we do not
use the simple vertical well assumptions we used in Chapter 5. That
having been said, there is one other important point: The friction curves
do not account for bending stresses in the pipe due to bore-hole curvature.
That is the next topic.

9.3 Curvature and Bending
Curved well bores add stress to casing, and often that added stress is quite
significant. A general lack of understanding of this has led to casing fail-
ures in the build sections of a number of horizontal wells. We now
examine the effects of bore-hole curvature and the resulting bending
stresses in casing.

But, before we get into particulars, we need to see a couple of for-
mulas, because we encounter them time and again in working with curved

Figure 9–7 Drag friction distribution for 5½ in. casing pulled off bottom in a 
horizontal well, as planned and as drilled.
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well bores. Curvature is the change in angle with respect to the distance
along the path, or mathematically,

(9.13)

where

The curvature may be expressed in two forms: as curvature, meaning a
change in angle as just shown, or a radius of curvature, R:

(9.14)

There is a mathematical quirk here, in that the curvature can be either pos-
itive or negative but the radius of curvature always is positive, since a neg-
ative radius is meaningless.

Curvature is measured in units of reciprocal length, that is, L–1. In oil-
field parlance, curvature is called by a colorful term, dog-leg severity, in
reference to a crooked hole. It usually is measured in degrees per 100 ft or
degrees per 10 m. To convert from curvature as used in oil-field termi-
nology to radius of curvature and vice versa, we need a formula. In
oil-field units this is

(9.15)
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where

In SI units, the conversion formula is

(9.16)

where

There are two other versions of curvature in metric units, degrees per 30
m and degrees per 100 m. The former is numerically approximately the
same as degrees per 100 ft and was used for a number of years but is
fading from popularity. When using degrees per 30 m, the numerator is
5400. The latter measure, degrees per 100 m, was common about 20 years
ago but does not see much use today.

We employ two conventions in referring to curvature here:

• Although we often use radius, , to quantify curvature, the 
descriptions small or large values of curvature refer to the values 
of . Hence, a large radius refers to a small curvature and vice 
versa.

• Measure of curvature in well bores always is assumed to be taken 
at the central axis of the bore hole.

9.3.1 Simple Bending
Calculating bending stresses can be a formidable undertaking in general.
Even the planar bending problem is a two-dimensional elasticity
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boundaryvalue problem, and several assumptions usually are adopted so
that a simple solution may be obtained. These ad-hoc assumptions are
known variously as Euler-Bernoulli beam theory, planar beam theory, or
simply just beam-bending theory. No theory really is involved, but a
merely set of a-priori assumptions about the way a beam deforms in
bending that allows for an analytic solution to the more complicated
boundary-value problem. For the case of tubes (see Figure 9–8), such as
casing, these are the typical assumptions:

• The tube initially is straight.

• The tube cross section is symmetric about the central longitudinal 
axis.

• All cross sections normal to the longitudinal axis before bending 
remain normal to the axis after bending.

• The central longitudinal axis (neutral axis) experiences no axial 
strain

• The tube radius is small compared to the length.

• The bending deflections are small in comparison to the length, so 
that the radius of the tube remains constant in all directions.

The result of these assumptions is an equation for the axial strain: 

(9.17)

where y is a coordinate in the bending plane with origin at the neutral axis
(center),  the angle in the plane of curvature, and s an axial coordinate
along the neutral axis of the tube. Substituting this into a one-dimensional
constitutive equation (Hooke’s law) gives us the axial bending stress:

(9.18)

It is obvious that the maximum stress occurs at the point where  is equal
to the outside radius of the pipe, . But we might want to determine the
stress at the inner wall also in cases of internal pressure, so we will just
leave off the subscript with the understanding that . The term
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 is the curvature of the bent tube, which is the reciprocal of the
radius of curvature, . So, in practical form, the equation becomes

(9.19)

where

It is important that the units used are consistent. In oil-field units, the
radius of the pipe usually is in inches and the radius of curvature of the
bore-hole path usually is in feet, so they must be converted to the same
unit (it does not matter which). In SI units, both measures should be in
meters. Young’s modulus usually is in units of lbf/in.2, kPa, or MPa, and
the bending stress is in the same units.

It is necessary to remember the assumptions of this formula before
using it, especially with tubes. As a tube bends, its cross section tends to
ovalize rather than remain circular. The pipe radius in the bending plane is
reduced as the cross section becomes ovalized, and the formula no longer
is valid. Since there is no easy way to determine the point at which the
shape is too ovalized to use of the formula, the tendency is to ignore it,
since it will overpredict the maximum bending stress when the pipe is
slightly ovalized. That makes the formula possibly a bit conservative in

Figure 9–8 Simple bending of a tube in a single plane.
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casing design. For long and medium radius of curvature wells, it seems to
work well for all but larger-diameter, thin-wall pipe. For short-radius
wells, it should be used with caution, and again, it would depend on the
pipe diameter and wall thickness. That may seem to avoid the specific, but
for certain, we can say that it becomes meaningless if the yield point is
exceeded.

9.3.2 Effect of Couplings on Bending Stress
One limitation of the simple bending formula, as we typically apply it, is
that it assumes the casing is in contact with the bore-hole wall along its
entire length and its curvature is the same as that of the bore hole. This
does not account for an amount of standoff due to the couplings. The cou-
pling standoff allows for local bending with a smaller radius of curvature
than that of the bore hole, therefore possibly a higher bending stress due
to axial tension or compression loading in the pipe. In the tensile case, the
couplings usually are tangent to the bore-hole wall, so that if the pipe
between couplings is not in contact with the bore-hole wall, then the ten-
sion tends to straighten the joint between couplings. The result is that the
greatest bending stress in the joint is in the pipe body near the couplings,
until the pipe makes contact with the bore-hole wall, then the maximum
bending stress in the pipe may be at some other point. In the compression
case, the casing between couplings is forced toward the bore-hole wall in
a compressive mode and the bending stress is higher near the couplings.
Once pipe body contact with the bore-hole wall is made in compression,
the point of maximum curvature and bending stress may be at some other
point in the tube. This is illustrated in Figure 9–9.

Figure 9–9 Effects of couplings in bending: (a) tension, (b) compression.

(a) (b)
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An equation for determining the maximum bending stress with con-
nections was derived for the tension case (Lubinski, 1961, 1977), and
later derivations were done for both tension and compression (Paslay and
Cernocky, 1991). Lubinski’s equation initially was developed to account
for the standoff of drill-pipe tool joints and the effects this had on the
fatigue of drill pipe rotating in tension in curved well bores. His equation
later began to appear in conjunction with casing design in curved well-
bores. His equation (and all that follow in this discussion) assumes that
the bore-hole curvature is constant and in a plane between casing cou-
plings, the coupling length is small compared to the length of the joint, the
couplings are in contact with the well-bore wall, and the couplings are
tangent to the well-bore curvature at the point of contact. Also assumed is
that, since the coupling is relatively small in length, its entire length is in
contact with the wall and it does not bend. These are reasonable assump-
tions. Although not in Lubinski’s original form, his equation from 1961
can be written as follows:

(9.20)

which is essentially the same as our previous bending equation, equation
(9.19), except for the factor, , which has been called a bending-stress
magnification factor. Note that there is no  in this equation, since
Lubinski’s equation is valid only in tension. Lubinski’s bending stress
magnification factor is

(9.21)

where
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where

The second area moment of the tube cross section about an axis passing
through the center of the tube perpendicular to its longitudinal axis is

.
The units of length should be in inches for oil-field units and in meters for
SI units. Note also that we used the absolute value of the axial load in this
formula. In this particular equation, we are talking about tension, but later
we use the same quantities for equations in which the axial load is in com-
pression, a negative value, and the square root would be a complex
number. We choose this slight modification so that we may use the same
nomenclature in both the tension and compression states. And, in that
context, we could resume use of the  sign in equation (9.20), once the
equations for  are given for the compression case.

The limitation of this equation of Lubinski’s is that the casing does
not contact the bore-hole wall between the couplings. Simply stated, if
there is contact, the equation no longer is valid. That notwithstanding, his
equation appeared in various places to show that coupling standoff is
important in casing design, but without mention of the contact limitation.
One cannot just plug numbers into Lubinski’s equation without under-
standing its limitations. One always must determine the valid range for a
specific application.

The maximum displacement from a straight configuration to contact
by the midpoint of the casing between couplings is

(9.24)
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This gives the approximate maximum displacement of the midpoint of an
initially straight pipe deflected to the point of contact with the bore-hole
wall. The second term, , is the standoff due to the coupling, defined as

(9.25)

where

As previously mentioned, Paslay and Cernocky (1991) did additional
work in this area. They solved the problem in both tension and compres-
sion and cast it in a slightly different format, which lends itself to com-
puter programming. The tension case results in a formula for each of the
three possibilities: no contact, point contact, and wrap contact. The first
two are self-explanatory, and the wrap contact is reached when the curva-
ture of the pipe in contact with the bore hole begins to follow the
curvature of the bore hole. Since there are both tension and compressive
axial-loading possibilities, the pipe can take six modes of deformation:

Mode 1. Tension, no contact.

Mode 2. Tension, point contact.

Mode 3. Tension, wrap contact.

Mode 4. Compression, no contact.

Mode 5. Compression, point contact.

Mode 6. Compression, wrap contact.

Paslay and Cernocky (1991) derived equations for all six modes, plus four
equations necessary to define the transition between modes (two for ten-
sion and two for compression). We present their results with very little
explanation, and one should read their paper for a full understanding of
the derivations. 
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Mode 1. Tension, No Contact

The bending-stress magnification factor for this mode is

(9.26)

This equation is equivalent to Lubinski’s equation, equation (9.21). The
nomenclature for this equation and the following remain the same as
previously defined.

Mode 2. Tension, Point Contact

Point contact begins when the tension is such that

(9.27)

This nonlinear equation in  must be solved numerically for values of
tension, , contained in  and  to establish the value of tension at
which contact is established. The equation for the bending-stress magnifi-
cation factor for point contact is

(9.28)

Mode 3. Tension, Wrap Contact

Wrap contact begins when the curvature in the casing first begins to equal
that of the bore hole where the two are in contact. Wrap contact begins
when the magnitude of the tension is such that

(9.29)
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This nonlinear equation must be solved numerically to determine the
value of the axial tension at which the wrap contact begins. The equation
for the bending-stress magnification factor in wrap contact is

(9.30)

where we must first solve the following nonlinear equation numerically
for :

(9.31)

Paslay and Cernocky state that the solution of interest is in the range

(9.32)

Mode 4. Compression, No Contact

The equation for no contact in compression is.

(9.33)

Mode 5. Compression, Point Contact

When the compression load in the casing reaches a magnitude at which
point contact is made, the following condition is satisfied: 

(9.34)
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It must be solved numerically to obtain the axial load at which point con-
tact occurs.

The Paslay and Cernocky bending magnification factor for point con-
tact in compression is a bit more complicated, in that there are three
possibilities as to where the maximum bending-stress occurs. The max-
imum could occur at the coupling, the midpoint of the joint, or under
some circumstances, at another location in the pipe. One must determine
the first two, then determine if the third possibility exists and, if so, its
magnitude. Once those are calculated, the maximum of the three is the
bending-stress magnification factor. 

At the coupling, 

(9.35)

At the midpoint,

(9.36)

Two additional quantities are needed to determine the possible third point:

(9.37)

(9.38)
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(9.39)

If  is outside the valid range, then  does not exist and the maximum
bending-stress moment will be either at the midpoint or the coupling. The
maximum bending-stress factor is the maximum absolute value of the
three possibilities:

(9.40)

Mode 6. Compression, Wrap Contact

When the compression load in the casing reaches a magnitude such that
wrap contact begins, the following condition is satisfied: 

(9.41)

As before, this must be solved numerically to determine the axial com-
pressive load at which wrap contact begins. 

The bending-stress magnification factor for wrap contact in compres-
sion has two possibilities: The maximum is at the coupling or some other
point between the coupling and the midpoint. Since the casing curvature
at the midpoint is the same as the bore-hole curvature, the bending magni-
fication factor there is unity. 

At the coupling,

(9.42)

where we must first solve the following nonlinear equation numerically
for :

(9.43)
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Paslay and Cernocky do not give a range for the solution, but it appears
the range given in equation (9.32) might be at least a starting point. 

We then calculate two more quantities:

(9.44)

and

(9.45)

Then, we calculate a stationary value of the bending-stress factor at some
location in the pipe, if it exists:

(9.46)

If  is outside the specified range, then  does not exist. Paslay and
Cernocky recommend assigning a value of unity in that case, if it is used
in a computer program. A value of unity is equivalent to saying there is no
bending-stress magnification at that point. Then, the maximum bending-
stress magnification factor for this joint of pipe is the maximum of the
absolute values of  and :

(9.47)

Comments on Bending-Stress Magnification

As can be seen, calculation of the bending stress magnification factors of
Paslay and Cernocky (1991) is not exactly something that can be done
manually. These formulas may be programmed for computer implementa-
tion, but the programming is far from trivial. Paslay and Cernocky were
interested primarily in drill-pipe fatigue, and they mention solving the
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transition equations for the standoff quantity that we labeled . In that
context, the equations are linear and solved easily. That may be of some
use in selecting a drill-pipe string with various options as to tool joint
dimensions, but in most casing design, the standoff, , is a fixed quan-
tity, and our primary interest in the transition equations is in the value of
the axial load that determines the transition point from one mode of con-
tact to another, so that we might apply the appropriate equation for the
bending-stress magnification factor, . In terms of the axial load, which
is contained in the variables,  and , these equations are nonlinear and
must be solved numerically. All the nonlinear equations that must be
solved numerically have been recast here to avoid singularities in the
numerical solutions, so they may not exactly resemble those of Paslay and
Cernocky. However, some of these equations have local minima and
maxima and multiple roots, so they are best solved with a bracketing tech-
nique, such as the bisection method. It might be of some help to see a plot
of some of the nonlinear equations that determine the contact mode transi-
tion points, and an example is shown in Figure 9–10. This figure is for a
specific casing size and bore-hole curvature so it will vary for different
casing sizes and borehole curvature. 

The two equations that define the transition between tensile modes
are relatively easy to solve with a simple bracketing method, such as a
bisection method. However, for small values of curvature, , (or large
radius, ), there is a range for which contact is physically impossible
and will result in an infinite root. That condition can be stated as

(9.48)

Another characteristic of the tensile modes is that, when the curvature is
small, the value of the tensile load at which point contact occurs is far
greater than the joint strength of the casing, so there is no point in
searching for a root if it lies beyond the joint strength.

The two transition equations for compression exhibit especially bad
behavior, as equations with trigonometric functions often do over a wide
range of values. As previously mentioned, the equations of Paslay and
Cernocky have been recast here to avoid numerical singularities, but they
still produce multiple roots. The first roots for these two equations tend to
lie close to the origin for large curvature and further away for smaller
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values of curvature. From a computational standpoint, this means that a
combination procedure that first brackets the root starting very near the
origin, then proceeds to locate the root within the bracket, is a good
approach. Perhaps, someone with an inclination toward such things might
even define a valid range based on the mechanics of the problem and save
us the effort. The physical meaning of the additional roots to these equa-
tions does not appear to have been explored, but Mitchell (2003) has done
work in lateral buckling of drill pipe in curved well bores and shows that
the Paslay and Cernocky equations underpredict the bending-stress
magnification in cases where compressive loading causes lateral buckling.
The reason for the higher bending-stress magnification in those cases is
that the lateral buckling is out of the plane of the well-bore curvature to
which the Paslay and Cernocky equations are confined.

It is does not seem to have been mentioned in any of the discussions
on the bending-stress magnification factor as to the nature of the axial
load used for actual calculations. Simple bending, as described by equa-
tion (9.19), is independent of axial loading, but the bending-stress

Figure 9–10 Typical behavior of transition equations for compression and 
tension. The compression equations usually have additional roots farther to the left.
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magnification factor, , is not. That raises the question as to whether we
use the true axial load or the effective axial load to calculate . We use
the effective axial load. (And if you do not believe that, then it falls on you
to prove otherwise.) 

If one actually calculates the bending-stress magnification factors for
a particular casing design, one may be alarmed at their magnitudes, which
easily may range between 1 and 4, yet for some reason, this process rarely
is considered in actual casing design. One excuse might be that it is not
something that can be calculated easily, but surely if casing failures actu-
ally occur because of bending-stress magnification, then everyone would
have a computer program to calculate it. The most probable reason that
we do not recognize problems caused by bending-stress magnification is
likely because, in most casing strings, the highest value of tension occurs
near the surface, where the curvature often is relatively small. It is not
unusual to see bending-stress magnification factors of over 5 in such
instances, but the bending stress due to bore-hole curvature is so small
that, when multiplied by a large magnification factor, it still is only a
small percentage of the yield strength of the casing, especially when we
are inclined to use relatively large design factors in tension loading. This
is not to say that it can be ignored, but that it does not seem to cause prob-
lems in most wells (or at least that we recognize as such). Bending-stress
magnification should certainly be considered for casing design in deeper
wells and any well where the combined loading may be close to the yield
of the casing.

We definitely do not attempt an example calculation here, but Figure 9–11
shows an example of the bending stress magnification factors for an actual
horizontal well. And, as would be expected from our discussion, they are
highest near the surface.

These factors were calculated to check a previously designed casing
string for the specific well bore in which it would be run. While the results
might tend to be cause for apprehension due to the large magnitudes, the
overall effect in this well is negligible, as will be seen in a following sec-
tion of this chapter devoted to combined loading in directional wells. The
combined loading for this well is shown with and without bending-stress
magnification in that section in Figure 9–12. It can be seen there that the
only significance of the bending-stress magnification is in the build sec-
tion of the well, as one would intuitively expect.

λ
λ
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9.3.3 Effects of Bending on Coupling Performance
There are no standards on coupling performance in bending other than
what some companies and manufacturers established for themselves. The
exception to that is the API formula for bending strength of 8-rd thread
couplings, which appears in API Bulletin 5C3 and ISO 10400 (2004
draft). This formula predicts the maximum tensile load that can be placed
on a coupling in a curved well bore. Actually, there are two formulas and
one has to be tried first to verify if it is the correct one; if not, then the
other is used. The two formulas with their validation criteria are

(9.49)

(9.50)

Figure 9–11 Bending stress magnification factors for a horizontal well.
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where

These formulas are full of conversion factors that are not worth sorting
out. Even the new ISO 10400 (2004 draft) does not bother to present them
in SI units, if that gives you pause for thought. There is some disagree-
ment as to the worth of these formulas, and for that reason, no SI version
is included here either. In a bending situation, the threads on the convex
side of the pipe are subjected to the axial load plus the maximum tensile
bending stress; and on the concave side, the threads are subjected to the
axial load less the maximum compressive bending load. The threads
perpendicular to the maximum and minimum are subjected to only the
axial load in the pipe due to tension or compression (neglecting pressure).
One way that combined bending and axial load was handled historically
amounted to multiplying the maximum bending stress times the cross-
sectional area of the tube, adding it to the axial load, then comparing that
sum to the joint strength of the casing. The API formulas probably are
better than that but not by much. The best recommendation that could be
made here is no recommendation at all, as neither method inspires much
confidence. One thing that should be understood about the 8-rd thread in a
bending situation, though, is that it is considered a poor choice by most
operators. V-shaped threads have a tendency to “jump out” or override
one another because the shape is conducive to this, and possibly more so
in the presence of a thread lubricant. Most operators of horizontal wells
elect to use a thread with a more squared profile as opposed to a V-shaped
profile, because it lessens the possibility of jump-out. A buttress thread
has a square contact in tension but is somewhat tapered in compression.
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A buttress-type thread has performed successfully in medium-radius
wells for many operators. Most proprietary threads are a better choice,
and in critical wells, the proprietary threads that tend to interlock are a
much better, although more expensive, solution. Some proprietary thread
manufacturers publish bending performance data for their connections,
and these can be quite useful. Until some meaningful standards are
published, the API formulas for 8-rd threads are a starting point.

9.4 Combined Loading in Curved Well Bores
We examined combined loading in the previous chapter. Perhaps, the
most common occurrence of failure due to combined loading is in hori-
zontal wells or highly deviated wells. Primarily, this is caused by the addi-
tion of the bending stress, which many do not realize is quite significant in
magnitude. Our approach to casing design for these wells is to use con-
ventional load curves for burst and collapse. Then, the tension design is
based on a load curve that includes the effects of both gravity and friction,
so it will be quite different from casing hanging in a vertical well. A typ-
ical curve like this is seen in Figure 9–7. John Greenip (1989) illustrated a
simple method for designing casing strings in highly deviated wells, using
torque-and-drag curves like we discussed in the previous section on bore-
hole friction. He went a step further to include bending stress, which he
converted to an equivalent axial load by multiplying the bending stress by
the cross-sectional area of the tube so that it might be considered part of
the tensile load. That equivalent axial load is added to the axial load from
the bore-hole friction curves in the appropriate places to constitute a ten-
sile load curve for casing selection. The procedure produces an adequate
design for most directional wells and has been used successfully by
numerous operators. Here, we assume that we designed a casing string by
that method or something similar, and we now are ready to check it for the
effects of combined loading, especially in the build section.

Although none of the single loads, such as tension, bending, or burst,
may exceed the yield strength of the pipe individually, it is quite possible
that the combination of the loads may exceed the yield strength. And there
are no handy charts to adequately show the effects of the combined loads
often encountered in highly deviated wells. It is easy to check the com-
bined loads at critical points manually to determine whether we need to
make adjustments to a design or not. We also could do this with a spread-
sheet and check the entire string. Next is an example of a horizontal well
in which there was a casing problem. The operator had drilled the vertical
part of the hole and a build section to an inclination of 90° . The company
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was running 7 in. casing, and about halfway through the build section, the
casing hit an obstruction, which is not unusual in a horizontal well, if the
drilled cuttings are not sufficiently cleaned out of the bore hole.8 The
operator took immediate action. He put a circulating head on the casing,
then tried to wash through the obstruction. At first unsuccessful, the
driller slacked off the brake even further. As hard as it may be to under-
stand, he set the entire string weight on the obstruction. The shoe plugged
and the internal pressure at the surface rose to 3000 lbf/in.2 before he was
able to shut off the pumps and pick up the string off bottom to relieve the
pressure. The operator pulled the casing out of the well and found one of
the joints in the build section had buckled and crushed. Here are the data
and calculations for this example.

Example 9–1

Data at 6000 ft (TVD):

Casing OD = 7.0 in.

Casing ID = 6.366 in.

Casing grade = J-55 (Y = 55,000 lbf/in.2).

Young’s modulus = 30 × 106 lbf/in.2

Axial compression = –122,000 lbf (from torque and drag estimate).

Radius of curvature = 300 ft.

External pressure = 3000 lbf/in.2.

Internal pressure = 6000 lbf/in.2.

Determine if combined loads will yield pipe.

1. Calculate the axial stress:

8. The build section of horizontal wells is notoriously difficult to clean because 
cuttings tend to migrate down the low side of the hole at inclination angles be-
tween 45°  and 60° , even at relatively high circulating rates.
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2. Calculate the bending stress:

Note that we had to get the radius of curvature into the same units 
as the pipe radius.

3. Calculate the pressure effect using at the outside wall using the 
Lamé equations:

4. The maximum axial stress at the external wall is the preceding 
axial stress plus the bending stress:

5. Since there is no torque, these are principal stress components 
and can be plugged directly into the von Mises criterion:
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Clearly, this combined load value is well above the yield strength of the
casing. This casing string, in fact, did fail. The operator was not aware
that the combined loading could be that significant. In this case, the oper-
ator was lucky to get the casing out of the hole. Others have encountered
similar circumstances and found the lower part of the casing string
missing when they pulled the string out of the hole. In this case, we calcu-
lated the combined load at the outer wall of the casing, assuming that,
since the maximum bending stress occurs at the outer wall, that would be
the critical location. But, the maximum stress due to pressure occurs at the
inner wall, and if we calculate it at the inner wall, we find that the com-
bined load there would be slightly less at 63,700 lbf/in.2. In this case, it
was not obvious as to whether the maximum combined load would occur
at the inner wall or outer wall, but it did appear obvious that, since the
pipe was in compression, it would occur on the concave side of the curve.
One should be careful about such assumptions, however. While the max-
imum combined load typically occurs on the concave side when the pipe
is in compression and on the convex side when it is in tension, that is not
true in general because of the influence of the pressure.

It is relatively easy to program the Lamé equations and the von Mises
yield criterion in a spreadsheet to calculate the combined loading for a well
for use in casing design. From a directional survey, one needs the mea-
sured depths, true vertical depths, and radius of curvature between survey
points. From a torque-and-drag model, one needs the true axial loads for
motion in both directions, so that one may check for the worst-case sce-
nario. Additionally, one needs the pipe dimensions and specific weights,
the fluid densities, applied pressures, and so forth. One does not actually
need both directional and friction software to get this data, as it all can be
programmed into a single spreadsheet. The addition of a bending-stress
magnification factor would be a bit cumbersome in a spreadsheet though,
but it can be done. One convenient way to look at combined loading in
casing design is in a plot of the combined load as a percentage of pipe
yield stress. Figure 9–12 shows the combined load in a simple L-shaped
horizontal well as a percent of the yield of the casing. This is a rather
simple case, where the entire string is a single weight and grade of casing,
5½ in., 17 lb/ft, N-80. The operator plans to do multiple hydraulic fracture
treatments in this well at high rates and pressures. The combined load is
calculated for a burst scenario, where the frac treatment might screen out
with a full column of frac fluid and proppant such that the pressure equal-
izes at maximum surface treatment pressure.
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A plot like this figure provides an easy way to visualize the effects of
combined loading. If necessary, a casing string could be modified to
reduce the combined loading effects. One last precaution though, com-
bined loading using a von Mises yield criterion does not account for con-
nection strength nor collapse prior to yield, as mentioned in previous
chapters.

9.5 Closure
Directional wells and horizontal wells place additional loads on casing
that are not present in vertical wells. We looked at the effects of friction
and curvature in this chapter and saw the extent of these types of loadings.
We also examined the combined effects of tension or compression, pres-
sure, and bending in these types of wells to get a feel for the relative sig-
nificance. What one should get from this chapter is an understanding of
the loads in these types of wells and a certain amount of comfort in being
able to check conventional designs for these types of wells. 

Figure 9–12 Combined loading in a horizontal casing string.
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CHAPTER 10

Special Topics

10.1 Introduction
This last chapter is a place to discuss a few topics that are not exactly
related to casing design but nevertheless are related to the use of casing.
The first topic is casing wear, which is significant when drilling takes
place below the casing string. A method is shown as to how to determine
where the wear will be the most severe. Given that knowledge, one can
know where it is necessary to use pipe protectors and possibly even
modify a casing design to include thicker wall pipe. 

The second topic is expandable casing, which is a relatively new
product. It has seen some good success and increasing use. We discuss
briefly the applications and limitations as they currently are understood. 

Finally, the topic of drilling with casing and liners is discussed.
Whether this topic belongs in a book on casing, a book on drill strings, or
a book on drilling procedures is an open question. What we attempt here
is a brief overview of the topic, primarily as it relates to casing rather than
the specific rig requirements and drilling techniques.

10.2 Casing Wear
Casing wear is a serious problem in many intermediate strings and some
surface strings. It often is the reason that an intermediate string cannot be
used as a production string in combination with a production liner.
Reduced wall thickness or a hole in the pipe can be disastrous. There is no
good way to repair badly worn pipe so that it will contain higher internal
pressures other than to run a new string inside it with the accompanying
reduction of internal diameter. Hence, it is quite important to prevent or
minimize casing wear.



356 Chapter 10—Special Topics

The primary mechanism for casing wear is the rotation of drill pipe,
although the tripping of the drill pipe also contributes to the wear but to a
lesser degree. Two things are necessary for the wear to occur, and these
are fairly obvious: contact force and movement of the drill pipe (rotation
and sliding). The rate of wear depends on a number of things, such as

• Magnitude of contact force.

• Rotation speed.

• Lubricity of the drilling fluid.

• Relative hardness of the drill pipe tool joints and casing.

• Presence of abrasives.

Of course, the total amount of wear depends on all these plus the time
duration during which wear occurs. Typically, we measure the amount of
wear as a percentage of reduction in the wall thickness, with 100%
meaning that the wall thickness is completely worn through. Reduction of
wall thickness is a linear measure and therefore somewhat misleading.
The amount of metal removed under a specific set of conditions generally
is a linear function of time, but the reduction of wall thickness is not.
Figure 10–1 illustrates why it is not. 

Figure 10–1 Increasing volume of metal with reduction in wall thickness.
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It is easy to see that, as the tool joint wears into the wall of the casing,
more volume of metal must be removed in relation to the amount of pene-
tration. So, while the rate of metal removed may be linear with time or
cumulative revolutions, the reduction in actual wall thickness is not. We can
see that, initially, the wall thickness reduction is quite fast, but as it
progresses, it becomes much slower because of the increasing volume of
metal that must be removed for a corresponding reduction in wall thickness.

Prevention of casing wear is of utmost interest in most wells. Histori-
cally, most of what was known about preventing wear came from common
sense and experience. We have long known that rough hard-banded tool
joints can wear a hole in casing as quickly as a mill. Even heat galling can
take place when the lubricity of the mud is low and the contact force is
high. And, no matter what precautions are taken, if there is sand in the
mud, all wear mechanisms are accelerated. Even with rubber pipe protec-
tors, the presence of sand causes wear, since the sand grains can become
imbedded in the rubber itself. So, assuming we know to keep abrasives to a
minimum and hard-banded tool joints out of the casing while rotating,
where do we install the pipe protectors to reduce wear? It was once thought
that we could make a plot of dog-leg severity (hole curvature) to determine
where the critical wear areas were. Historically, this proved unreliable. In
general, casing wear is not a function of the magnitude of the dog-leg
severity. The worst wear in casing typically occurs nearer the surface rather
than deeper and often where the magnitude of the dog-leg severity is typi-
cally less than 1°  or 2°  per 100 ft, as opposed to deeper in the well where
the dog-leg severity might exceed 4° /100 ft, for example. Another
approach that proved more useful is a plot of the difference between suc-
cessive dog-leg severity measurements. While that is a much better indica-
tion of the areas of most severe wear, it too can be grossly misleading in
some parts of the well. Until wear began to be studied more seriously, that
remained the only tool readily available to most operators for determining
the best location for pipe protectors. Most operators just ran them on every
joint or so in the upper half of the casing as a precaution. 

A lot of work has been done to try to quantify wear in casing, and
software is available to predict the amount of wear. The results of such
predictions have been mixed at best and, in many cases, have been totally
unreliable. The difficulty in quantifying wear is in quantifying all the vari-
ables that affect the process. In other words, one has to know pretty accu-
rately the time spent rotating, the penetration rate, the lubricating
properties of the mud, the rotation speed, the type and concentration of
solids and abrasives in the drilling fluid, and so forth. However, this is not
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a dismissal of such software by any means. While it has proven relatively
poor at quantifying actual casing wear, it is extremely good at predicting
where the critical wear areas in a casing string are located. For any given
mud system and amount of rotating time, the areas of most severe wear
are those areas that suffer the greatest amount of contact force between
the tool joints and casing. That contact force is quite easy to quantify, at
least to the accuracy needed.

An investigation was done several years ago with this type of software
run post priori on several wells that had experienced holes worn in the
casing. Good drilling data were available, as well as caliper logs that had
been used to locate the holes, and of course, directional surveys, which
are essential for use of the software. The results were a bit disappointing.
In none of these particular wells did the software predict a hole in the
casing, even though each actually had a hole worn through the casing. In
fact, the worst wall thickness loss predicted in any of the wells by the soft-
ware was slightly more than 50%. But, the important point again is that
where the software predicted the worst wear to occur was exactly where
the holes were (see Figure 10–2). In addition to the wear curves, the con-
tact force curves were plotted for comparison (Figure 10–3), and in fact,
the wear curves and contact force curves were almost identical, except of
course for the scale. The conclusion of that particular study was that,
while the software was not very good at quantifying the amount of wear, it
was excellent for determining the critical wear areas. It also was found
that a contact force curve by itself was adequate for predicting where pipe
protectors were needed while drilling below those strings of casing. And
that, ultimately, is what we want to know. because we cannot know with
certainty the exact properties of the mud system, abrasives content, and
rotating time prior to drilling. However, we do know the shape of the hole
and the planned well path below the casing well enough to predict the
amount of contact force on the casing.  

Differential dog-leg severity essentially is the difference between the
dog-leg severity at one point and that at the previous point. While it often
gives a similar plot to the two above, it gives misleading results near the
bottom of the casing string because it cannot account for the reduction in
contact force.

Contact force can be calculated from the bore-hole friction formulas
in this text (Chapter 9), and they easily can be programmed into a spread-
sheet. Most commercial torque-and-drag software also generates a contact
force curve. But, to use the contact force for determining the need for pipe
protectors, one must have directional survey data, and in the case of
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Figure 10–2 Results from casing wear software, showing the predicted amount 
of wear in a particular well. This casing string had a hole in it at about 3000 ft.

Figure 10–3 Contact force curve for the same well.
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vertical wells, this may not be available. Many companies feel that. if a
well requires an intermediate string for over-pressured reservoirs below,
then it should also have a gyro survey run in the intermediate casing in the
event it becomes necessary to drill a relief well to kill a blowout. In those
cases, the gyro survey can serve both purposes. There really is no reason
for not being able to determine where the casing wear will be most severe
and where pipe protectors should be placed in a drill string. Given that
knowledge and common sense as regard to wear mechanisms, casing
wear should not be a severe problem. 

10.3 Expandable Casing
Two problems with casing sizes sometimes arise in the drilling of wells,
both of which can increase the well costs and possibly prevent a well from
reaching its objective:

• Unanticipated conditions that require an additional casing string 
of casing after the well has been started.

• Known conditions that require multiple casing strings for a well 
before it has been started.

In the first case, the sizes and depths already are selected, and one or more
strings may be set before the need for an additional string arises. Unex-
pected bore-hole stability or pressure problems may require an additional
string that was not originally planned for. Another problem of similar
nature is the possibility that a planned casing string may stick before
reaching its planned depth and thereby necessitate an additional sting. In
these cases, an additional casing string or liner must be set and the final
casing string at total depth will be smaller than desired, unless some con-
tingency was included in the original plan to allow for such an event. The
second case is becoming more common in some areas, especially where
depleted zones may be present. Typically, we think in terms of a surface
string, an intermediate string, and a production string, possibly with a liner
somewhere in that mix, but basically three or four strings. Occasionally,
we may even find it necessary to run five or six strings, counting liners. In
recent times, however, we are seeing wells that require 7 or even as many
as 10 strings of casing to reach an objective. A conventional approach to
this problem requires some very large well bores and casing to reach the
total depth with a final casing string size that allows for adequate produc-
tion. In each of these cases, size and clearance become serious problems. 
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One answer to these problems is expandable casing. This is a type of
casing with connections that can be run through conventional casing (or
other expandable casing) then expanded to a larger diameter than a con-
ventional string run through that same size pipe. While this is a relatively
new technology, it has seen some good success in numerous applications.
However, it is not necessarily a panacea, as there are drawbacks, too.

10.3.1 Expandable Pipe
Expandable casing is not your typical casing product. First of all, it must
be ductile enough that it can be expanded without rupturing and still have
sufficient strength to function properly. We discussed plastic material
behavior in Chapter 7, so we do not rehash that here, but this is exactly the
type of behavior that takes place with this type of material. Consequently,
it does not come in standard API grades, weights, and so forth. Likewise,
there are no published standards of performance properties but rather
those are set by the manufacturer. Most expandable pipe is not seamless
pipe, since the wall thickness has to be much more uniform than most
seamless pipe. It is manufactured from flat plate steel that has been pre-
cisely rolled to within close tolerances. Now, seamless pipe can be used
and is being used in some expandable applications, but the wall thickness
must be very carefully determined to within close tolerances. You can
imagine the results of the expansion process if the wall thickness is not
uniform before the expansion; that is, most of the expansion takes place in
the portions where the wall thickness already is the thinnest. Additionally,
the connections must be expanded, since it must be run as individual
joints. When you consider the amount of expansion of the pipe body and
the threaded connections, you come to appreciate the technology of the
process, in that it is not nearly as simple as it might first appear. Obvi-
ously, for the performance properties of the expanded pipe to be reason-
able, the expansion process must be uniform.

10.3.2 Expansion Process
Two basic processes are used for expanding pipe, and they essentially are
the same two processes that have been around for more than 40 years,
since the first internal casing patches were introduced. Of course, they
have seen considerable improvement since that introduction. One process
involves a swaging operation in that an internal swage mandrel is run with
the expandable casing, and it expands the pipe from the bottom up as it is
pushed or pulled through the tube. This typically is a hydraulic process.
The other process employs a roller-type device that expands the casing
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from the top down, using a tapered device with rollers that expand the
casing as the device is rotated with a work string. One thing that must be
kept in mind, though, is the elastic unloading discussed in Chapter 7 about
elastic-plastic behavior. If we expand a tube plastically, it always exhibits
some amount of elastic shrinking from its plastic state. This means that it
has to be expanded to a slightly larger diameter than its final diameter to
account for the elastic unloading once the expansion tool is removed. 

The swaging process uses a mandrel with a circular cross section that
is in the expandable casing as it is run. The mandrel can be either a solid
piece or of a type that allows for retraction and retrieval through a smaller
diameter. In its expanded position, it is pumped or pulled through the
casing from the bottom upward and expands the casing as it moves
upward. This may be accomplished hydraulically or with a mechanical
pulling force, as long as the casing is not allowed to move as it is being
expanded. It is a positive type of expansion, in that, for the mandrel to
pass through, the casing must expand to the diameter of the mandrel.
Advantages of this process are that it imparts a true hoop stress to the
casing being expanded. If the wall thickness of the casing is uniform and
the material is isotropic, then the hoop stress is uniform. The expanded
tube should be round. The disadvantages are that the swaging process
induces an axial stress in the pipe as it is being pumped or drawn through
and may require a special coating internally to reduce the friction. If the
mandrel is a one-piece device and for some reason it cannot be pulled
through the entire expandable casing, then it cannot be removed unless it
can be milled up. This may not be a problem with retractable-type
mandrels, though they lack the simplicity of a single piece mandrel. 

The roller-type process was in use long before the expandable casing
patch was introduced, over 40 years ago. It historically was used to try to
restore partially collapsed casing. The roller process is simple, in that the
process starts from the top and expands the casing as it is rotated down-
ward into the expandable or collapsed pipe. It has the advantage that it can
be removed at any time, replaced, and resume the operation where it
stopped. The historic problem with rollers is that they do not work very
well, at least in the fixed version. A roller device does not induce true uni-
form hoop stress in a tube, because it contacts the casing at only a finite
number of points, usually three or four. The old roller-type casing patches
typically failed because they never were round in cross section once
expanded, because the rollers had only three contact points. Expanders
with four rollers were introduced and had better success than three rollers
but still never were as successful as the swage-type process. The use of
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casing rollers to restore partially collapsed casing historically enjoyed
limited success primarily because of the point contact with the casing wall
and the elastic unloading between contact points. Figure 10–4 shows a
typical swaging expansion process.

10.3.3 Well Applications
At the beginning, we mentioned the unanticipated well problem as a pos-
sible application for expandable casing. For someone who has been
involved in drilling operations for a period of time, this usually is the first
application that comes to mind. Expandable casing could be used in such
an application as a temporary means of getting past some troublesome
zone. Originally, the availability and lead time required for the expand-
able pipe to be a readily available solution for this type of problem was
limited. The expandable casing had to be ordered and available as a
backup for a particular well before the actual need arose. This changed in
time and is seldom a limitation now. Another drawback to expandable
casing as an unplanned contingency string is the cementing issue. If the
expandable string is to be reliably cemented, then the hole in which it is to
be placed must be either underreamed to a larger diameter than the bit that
will pass through the casing above it or it must be drilled initially to a
larger diameter as with a bicenter bit. These are not necessarily amenable
to unanticipated situations that may arise and require an additional casing
string. As it currently stands, expandable casing is a planned part of the
casing program and for that it has proven quite successful.

The cementing process in regard to expandable casing is a bit dif-
ferent from conventional casing cementing. The usual procedure is to
displace the cement prior to expanding the casing. This requires that the
casing expansion be completed before the cement begins to harden. The
expandable casing can be reciprocated and even rotated during the dis-
placement process, so in that respect, it is no less effective than a conven-
tional liner cementing job. The biggest differences may be the cement
near the top of the liner and whether or not one wants cement in the
annulus above the liner before the expansion process begins. As the
casing is expanded, the mud and cement in the annulus must be displaced
somewhere, and it goes into the annulus between the running string and
the previously set casing. If cement actually is displaced into this space
above the expandable liner, then there is a considerable discomfort factor
until the expansion is complete and this cement can be circulated out of
the well bore. For the most part though, since the expandable casing is
used for a temporary drilling liner, it is not critical to have cement all the
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way to the top of the liner. The process has been successful in numerous
applications, but it is a cause for concern. Most expandable casing is run
as a liner and the final part of the expansion process is the expansion of
the overlap in which some type of elastomer seals on the outside of the
expandable casing seal against the casing through which it has been run.
Once that seal has been established there is no way to displace cement
into the annulus short of perforating and squeezing. 

10.3.4 Collapse Considerations
The collapse rating of expandable casing is usually less than what one is
accustomed to in similar sizes of conventional casing. This is mostly due
to the thinner wall of the expanded tubes as compared to API tubes. The
thinner wall is the tradeoff we accept for the larger internal diameter
which in turn is the primary reason we choose the expandable tube. In the
discussion on plasticity, we mentioned that a material that strain hardens
in plastic tension may gain yield strength in that direction, but in the pro-
cess, it loses yield strength in compression. Also, if the casing wall does
not expand uniformly, then the collapse strength is less than if it had
expanded uniformly. With conventional casing, we can inspect its wall
thickness and eccentricity before it is run in the hole. With expandable

Figure 10–4 Running, cementing, and expanding process (courtesy of 
Enventure Global Technology).
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casing, there is no way to know with certainty the final wall thickness and
eccentricity, if any, until after it is in the hole and expanded. It can be seen
in some of the commercial videos that show the expansion process on the
surface that the final expanded tube has some amount of curvature in it.
The causes of this curvature could be attributed to variations in wall thick-
ness, residual stress, or anisotropic hardening. This is not said to denigrate
the expandable casing but to point out that one must understand that
expandable casing is not the same thing as conventional casing. It has dif-
ferent properties, one of which is a reduced collapse strength, and that
must be considered in any particular application and casing design.

Consequently, the most obvious practical application for expandable
casing is as an intermediate string or liner to be utilized during the drilling
of a well that eventually will be cased with conventional casing. In those
applications, it can be invaluable. For instance, Figure 10–5 shows a con-
ventional casing program for a particular application.

By utilizing expandable casing in the same well the program can be
modified as seen in Figure 10–6. The advantage is readily apparent, in
that the total depth now can be reached with the same size conventional
casing and smaller casing at shallow depths, if expandable casing strings
are used in the well plan. There are several possible variations. While this
may not be applicable for the most common wells drilled in the world, it
represents a considerable advantage in those costly wells that do fall
outside the common category.

10.4 Drilling with Casing and Liners
Drilling with casing is not new. It was routine practice in some shallow
fields between 50 and 60 years ago to attach a bit to a small-diameter pro-
duction string, drill a few hundred feet, and leave it on bottom once total
depth was reached. Outside that limited sphere, it generally was recog-
nized that, if casing could be used as a drill string without making bit trips,
there would be some obvious advantages over conventional drilling. The
earliest general thinking was that the ability to drill with casing would

• Reduce or eliminate trip time.

• Eliminate the need for a separate drill string.

The big drawback to the whole idea was that bits did not last very long,
and unless there was either some dramatic improvement in bit life or some
way to retrieve and replace the bit without tripping the casing, there was
no reason to consider the process except in the limited context of very
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Figure 10–5 Conventional casing program.

Figure 10–6 Casing program with expendable casing.

7”

9-5/8”

11-3/4”

13-3/8”

16”

20”

26”

36”

7”

9-5/8”

Expandable
9-5/8” x 11-3/4”

11-3/4”

13-3/8”

Exapandable
13-3/8” x 16”

16”

20”

Expandable
7” x 9-5/8”



10.4  Drilling with Casing and Liners 367

shallow wells. In recent years, improvements in technology along those
lines and the development of rigs specifically built for drilling with casing
brought about a considerable change. As a result, the two benefits have
begun to be realized, but so too have many other benefits that are in the
details of the process. Some are obvious, some are not. Before compiling
a list, it might be best to describe the process, so that the advantages
become more apparent.

10.4.1 Drilling Methods with Casing
Some of the shallow wells drilled with casing in the 1940s and early
1950s in northern Louisiana were drilled “on the cheap” so to speak. Typ-
ically, a reconditioned bit was welded to the pin end of a joint of 4½ in.
casing, and the well was drilled to a depth of a few hundred feet. The drill
string/casing string consisted of about 15–20 joints of pipe and was
cemented as soon as total depth was reached. The bit was left on the
bottom of the string. It was a crude process, based almost entirely on its
economic advantage.

The current processes of drilling with casing are considerably more
advanced. There essentially are four approaches:

1. Rotation drilling with conventional bits.

2. Rotation drilling with expendable drill-through bits.

3. Rotation drilling with wire line retrievable bits.

4. Slide drilling (with or without rotation) using retrievable down-
hole motors and bits.

The first case essentially is the same technique as the early methods,
except the technology is several orders of magnitude more advanced.
However, the general concept is the same, in that the bit is a permanent
part of the casing string, and if it fails before the total depth is reached,
then the casing must be tripped to replace it. This particular method typi-
cally is used for a final production string of casing or a final production
liner. Subsequent deepening of a well drilled with this procedure requires
a window or section milling operation and a sidetrack, although this
method is unlikely to be used if deepening is a consideration. 

The second method is slightly different from the first, in that the bit
does not form a permanent barrier on the bottom of the casing string. The
bit is designed so that it can be drilled through with another bit that will
pass through the casing. These expendable bits are drag-type bits with
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PDC cutters set in a drillable matrix material. This method also has a par-
ticular disadvantage in common with the first method, in that if the bit
fails before the required depth is reached, then the casing must be tripped
to replace it. Typically, this method is used for surface casing strings or
relatively short sections, where bit life is not a significant factor.

The third method is the heart of the new technology and the true sig-
nificant step that makes the drilling with casing process truly viable as an
alternative to conventional drilling. Current tools allow the bit to be
retrieved and replaced by wire line, so that dull bits may be replaced with
new or different types of bits. During the retrieval and replacement pro-
cess, it is also possible to keep the casing in motion to prevent sticking, if
that is a potential problem.

The fourth method of using retrievable down- hole motors has been
used primarily in drilling with liners but also is the method by which
directional wells may be drilled with casing. With this method, both the
motor and the bit (as well as directional tools) may be retrieved and
replaced using wire line.

The methods just described have a number of variations, but that is
the essence. These methods are necessarily accomplished with a top-drive
rig, although the drilling with a liner could be done with a conventional
rotary rig. The best results are with rigs specifically designed and built for
drilling with casing. A number of these rigs already exist and more are
likely to be built as the process gains wider acceptance. In addition to con-
ventional and special bits for these applications, special underreamers
have been developed for drilling below a cemented casing string to pro-
vide more clearance while drilling and for cementing. 

10.4.2 Casing as a Drill String
The casing used in drilling obviously undergoes stresses not normally
considered in conventional casing design. Primarily, the difference is in
the addition of torsion-induced shear stress. While it is common practice
to rotate liners while cementing, it is not that common to rotate full casing
strings, because of the high torque required to do so. The torque required
to rotate most full casing strings exceeds the maximum recommended
makeup torque of the connections, so torsional stress in the casing body
itself seldom is even considered. 

Connections

When casing is rotated for drilling, the first consideration is the connec-
tions. Casing connections usually are thought of in terms of one-time
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makeup and are never intended to be tripped in and out of a well bore.
Anyone who ever had to pull a full casing string out of a well can attest to
this. Standard API 8-rd threads are especially bad, in that a good per-
centage of them gall in such a process. This is true of many interference
types of threads in general, but any type of thread that is not properly
lubricated with approved thread lubricant can experience galling prob-
lems. The basic premise for drilling with casing is that the casing will not
be tripped, but in reality, a trip always remains a possibility, even though
remote. The main concern with many types of casing connections, then, is
the possibility of overtorqueing them to the extent of causing damage.
This is especially significant in connections that do not have a shoulder.
So the main concern with torque for most drilling with casing applications
is to not damage the connections. One solution is to use only shouldered
connections. This can be a rather expensive solution. Another possibility,
and one that has proven effective, is the use of stop rings, in other words,
inserts in the couplings that allow the pins to make up into the coupling to
a specified depth and no farther. This represents a sound, inexpensive
alternative to shouldered connections. While such rings have been used in
ST&C and LT&C 8-rd connections for some casing rotation applications,
these connections are not considered good choices for drilling with the
casing. For drilling applications, buttress threads with stop rings have
proven a much better choice.

Body Strength

We discussed the effects of combined loading in previous chapters. The
only thing to add as far as drilling is concerned is torsion. So, by knowing
the internal and external pressures and axial load, we can calculate the
radial, tangential, and axial stress components, just as we did in Chapter 7.
We also considered axial stresses due to bending in curved well bores and
gave the formula for calculating the additional shear stress component due
to torsion. All those stress component values are substituted into the von
Mises yield formula to determine the combined load, which we compare to
the yield strength of the casing. In most cases, a string adequate for the
normal application as casing also should be adequate for drilling as far as
the casing body goes. 

However, one additional aspect of casing design that is unique to
drilling with casing is the matter of casing collapse. One normally would
consider that collapse occurs only near the bottom of a casing string, but
that may not always be the case when the string also is used for drilling.
Suppose that, while drilling a well with casing, we experience a gas kick.



370 Chapter 10—Special Topics

How do we kill the kick? We do it the same way we do it with drill pipe:
We mix a kill-weight mud and circulate the gas bubble out, holding
enough back pressure on the choke to keep the annular bottom-hole pres-
sure slightly above the formation pressure. No problem there, because
that is fairly routine. But, what do we normally do when we get the kill-
weight mud to the bottom of the drill string? We normally stop the pump
to be sure that the surface drill string pressure goes to zero. This is how
we check to see if the “kill-weight” mud is actually “kill weight”; it is our
first and best opportunity to check this. Now consider that our drill string
is casing instead of drill pipe, so the internal-volume to annular-volume
ratio is quite different than in a conventional scenario. In this case, we
likely already have gas to the surface by the time kill-weight mud is at the
bottom of the casing string. Think about the surface pressures. The pres-
sure on the inside of the drill string/casing string is effectively zero, and
the annular pressure is the confined gas pressure at the surface. The casing
at the surface also has the maximum tension load of the entire string at
that time. Is the combined tension and collapse strength of the casing
string sufficient in this case? This is something that should be considered
in our casing design. We are not accustomed to thinking in terms of casing
collapse at the surface in a situation such as this, but this is something we
must consider now, because such a casing collapse could be disastrous.
We likely have a “wet buckle,” as described in Chapter 8, and in that
event, we no longer can circulate the well from the bottom.

In one of our examples in Chapter 4, we considered that a gas kick
while drilling below the 9⅝ in. intermediate casing could give us a max-
imum gas pressure of 7190 lbf/in.2 at the surface (Figure 4–6). Later, in
Chapter 5, we calculated the buoyed axial load at the top of the 7 in. pro-
duction casing run through that intermediate string at 341,000 lbf. The col-
lapse pressure of that 7 in. 29 lb/ft P-110 production casing is 8530 lbf/in.2.
If we include the effects of the axial tension, the reduced collapse value of
the casing is 7260 lbf/in.2. If we used that string of casing for drilling and
experienced a well control event like we just described, that would put us
within 70 lbf/in.2 of the minimum collapse strength of the casing. If we
were to pull an additional 15,000 lbf tension in the casing while trying to
keep it from sticking and there is a good chance the production casing
would collapse at the surface. This is a rather extreme example of a gas
kick that fills the entire annulus, which we would like to think would not
happen. Whether or not we actually could have such an event is debatable,
but it does represent a worst-case scenario. This is something that at least
should be considered in our casing design, if the casing is also going to
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serve as a drill string because we are not accustomed to considering
collapse in casing design anywhere except near the bottom.

10.4.3 Casing Wear and Fatigue
Earlier in this chapter, we discussed casing wear, but we were considering
wear from the inside as opposed to the outside. The rotation of a casing
string while drilling obviously is going to cause some amount of wear on
the outside of the string. We could use techniques like calculating the con-
tact force to determine where the wear will be the most significant, and
that should prove reliable, just as before, but the difference is that, in this
case, the casing string is not static. Such a method would tell us at what
depths in the bore hole the wear will be greatest, but it will not tell us
where in the casing string the wear will be the greatest, because the casing
string is not static in relation to the bore hole. We probably could develop
some rotation time and contact force correlations, but that would require
data we may or may not have. Certainly, this can be developed in the
future, but for now, the assumption is that any casing in the open hole is
subject to wear and must be protected. Currently, this is accomplished
with wear rings that are crimped onto the casing with hydraulic tools spe-
cifically designed for that purpose. Practical experience so far shows that
this is effective.

Fatigue of casing in drilling operations has certainly not received the
amount of study that the drill pipe has. The principles essentially are the
same, except for the different types of connections. Casing fatigue as
related to drill string harmonics has been observed in practice. Well-bore
curvature in directional applications might cause some fatigue problems,
too, although that has not been seen in practice so far. Increasing applica-
tions of drilling with casing will lead to further developments in this area.

10.4.4 Cementing
Cementing a casing string that has been used to drill the bore hole in that
hole should be relatively easy. Special float equipment has been developed
to use while drilling or to be inserted into the string once drilling has been
completed. The casing string can be both reciprocated and rotated during
cementing to aid in displacement of the mud, which is something generally
not possible in conventional cementing operations. Crimped-on centralizers
have been developed and are run with the casing initially. These are rigid
with curved blades to aid in mud displacement. It appears the only thing
that cannot be run are sidewall scrapers and wipers. With good-quality mud,
centralizers, and pipe movement by reciprocation and rotation, adequate
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mud displacement should not be a problem in cementing. Liners used as
drilling strings may be cemented in a similar manner. Liner hangers have
been developed so that the liner may be hung and cemented immediately
after drilling. 

10.4.5 Advantages and Questions
Having discussed the casing and liner drilling operations, it seems that a
list of advantages is now in order and most of these should already be
obvious: 

• Trip related

• Time savings.

• No drill collar handling.

• Less wear on equipment.

• Less chance of swabbing.

• Less chance of surge fracturing formations.

• Crew related

• Less crew exposure to pickup and lay-down operations.

• No derrick man for numerous trips.

• No casing crews. 

• No casing elevator or stabbing board with which to contend.

• Drilling related

• Lower circulating rates and pressures.

• Better cuttings transport (reduced annular volume).

• Better control of equivalent circulating density.

• Overall better well control while drilling.

• Less chance of differential sticking in most cases due to pipe 
movement.

One other interesting phenomenon observed in some actual drilling cases
is a reduced tendency for lost circulation where it has been a known
problem in the same area with conventional drilling. This has been attrib-
uted to the formation of filter cake or compaction of mud filter cake into
formation pore spaces at the bore-hole wall. A filter cake or plugged pore
spaces cannot make a formation stronger per se, but as discussed briefly
in Chapter 3, the fracture pressure of a formation is lower if the fracturing
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fluid can enter the pore spaces prior to fracture. It appears that what has
been observed in these cases is that the drilling fluid is unable to enter the
pore spaces prior to fracture. While it is possible that the rotating casing
more thoroughly “packs” the pores on the formation face with mud filter
cake, it also opens the question as to how much damage is done to the
filter cake in tripping the drill pipe. It is also possible that effect of the trip
surges on the formation are not always apparent during the trip itself. This
remains an interesting phenomenon for further investigation. 

Despite the advantages of drilling with casing and liners, obviously
questions remain unanswered or only partially answered. They are related
mostly to equipment development, reliability, availability, and so forth;
and there are questions regarding specific issues such as

• Fatigue failures of casing.

• Actual casing wear.

• Cementing reliability.

• Differential sticking tendencies of larger-diameter pipe.

• Consequences of trips with casing if the necessity should arise.

These are questions that will be answered in time and as the technology
develops.

It should be apparent from this discussion that we have not examined
the economic benefits of drilling with casing or liners, and that is not a
subject for this particular book. A fair portion of what has been done so
far has been experimental and developmental in nature. However, definite
economic benefits are being demonstrated in certain locales, and there is
no reason to think that they are limited to any particular area. Those
benefits must be evaluated on an individual basis.

10.5 Closure
This brings us to the end of this chapter and the end of this book. I resist
the temptation to say more.



This page intentionally left blank



375

Index

A
Absolute system 22, 23
Alberta Energy and Utilities Board

167
American Petroleum Institute (API) 2
Amonton-Coulomb friction, see

Friction
Angle of repose 321
API grades 10
API gravity 122
Archimedes’ principle 36–46, 156
Axial compression 164
Axial loads 103, 154–161

types of 156
Axial stress 169, 255
Axial tension 164

B
Basis vectors 211
Bauschinger effect 240
Beam-bending 332
Bending 154
Bending stress 258, 329, 331

effect of couplings on 334–348
magnification factor 342

Bending-stress magnification factor
335, 338, 339, 340, 341, 
343, 345

Biaxial casing design 249, 251
Bicenter bit 101
Bisection method 343
Bit clearance 100
Bore-hole friction 143, 154, 155, 193, 

314–329, 358
calculating 322–329
coefficient 328

Bore-hole stability 88, 193
British gravitational system 22
Buckle propagation pressure 270
Buckling in a vertical well bore 300
Buckling in an inclined well bore 300
Buoyancy 36–46, 154
Buoyancy factor 38, 64, 70, 158, 297
Buoyed specific weight 67, 70, 71
Buoyed weight 155
Burst design strength 263–269
Burst loading 106–108
Burst loads 103

gas 116
oil 122

Burst strength 143, 164

C
Cartesian coordinate system 205, 212, 

214, 222, 254
Casing dimensions 6–9
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Casing drilling 365–373
body strength 369
cementing 371
connections 368
drilling methods 367
wear and fatigue 371

Casing grades 9–12
Casing handling tools 190
Casing hanger

mandrel-type 195
slip-type 195, 196, 197

Casing selection 133
size 96–97

Casing wear 355–360
mechanism for 356
quantifying wear 357

Casing weight 8
Characteristic equation 227
Circular cylindrical coordinate system

254
Clearance problems 143
Coefficient of thermal expansion 235, 

303, 304, 306
Collapse design strength 269–278
Collapse loading 105–106
Collapse loads 103, 116
Collapse resistance 143
Collapse strength 143, 164
Collapse with combined loads

161–175
Combined hardening 241
Combined loading 279

current API-based approach 283
curved well bores 348–352
proposed API/ISO-based 

approach 287
yield-based approach 279

Combined loads 161, 167, 279–289
Combined loads formula 172
Compressibility factor 54
Conductor casing 89, 90
Connections 12–16, 142

API 8-rd 14

box end 12
in compression 309
field end 12
flush-joint 16
integral-type 15
interference sealing 13
line pipe 14
metal-to-metal seals 13
mill end 12
pin end 12
premium 16
proprietary 16, 143

Constitutive equation 231, 332
Contact force 358
Continuum 215, 216
Continuum mechanics 216
Contraction 207
Coordinate systems 33, 211
Cost 176
Coupling standoff 334
Critical inclination angle 321
Cross products 210, 214, 215
Crossover joints 185
Crossover subs 186
Curvature 154, 330, 331
Curved well bores 329

D
Deformations 216, 217, 218

finite 220
large 218, 220
small 218

Design curves 135, 142
Design factors 134–135, 136, 155, 

156, 173
Design limits 203
Design load curves 110
Design parameters 154
Determinates 210, 227
Deterministic design method 202
Deviatoric invariants 229
Deviatoric stress invariant 244
Differential dog-leg severity 358
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Directional well 155
Dislocations 5, 239
Distributed load 221
Dog bone sample 236
Dog-leg severity 330
Dot product 214
Drift diameters 97
Drift mandrel 7
Ductile Rupture 266–269
Ductile steels 235
Dummy index 206, 207, 208

E
Effective axial load 59, 67, 68, 156, 

158, 195, 323
Effective loads 40
Elastic collapse formula 273
Elastic yield point 203
Elastic–perfectly-plastic material 239
Electric resistance welding (ERW) 3
Elevators 190
End conditions

capped 256
fixed 256

Energy density 35
Engineering stress 238
Engineering systems 22
English engineering system 22, 23
Euclidian space 216
Euler method 324, 325
Euler-Bernoulli beam 332
Expandable casing 101, 360–365

expansion process 361
well applications 363

Extensible body 318
External upset (EU) 13

F
Filling operation 187
Fluid statics 32–46
Forces, fluid

normal forces 33
shear forces 33

surface forces 33
Formation pressure 79
Fourier’s law 231
Fracture gradient 83, 85
Fracture pressures 77, 82–87, 91, 92
Free index 206, 207
Freeze point 194, 195
Friction 74

Amonton-Coulomb 314, 318, 
320, 322, 323

coefficient of 314, 316
coefficients for bore holes 328
dry 316
force 314
lubrication 316
normal contact force 314
see also Bore-hole friction

Friction load 155
Frictional drag 143
Frictional force 314

G
Galled threads 144
Gas gradient 120
Gravitational forces 154
Gravity 22, 154

local acceleration of 22
standard gravity 24

H
Helical buckling 292, 298
Highly deviated wells 193
Hooke’s law 26, 233, 303, 332
Huber, M.T. 244
Hydrostatic calculations, oil-field

46–75
gas columns 53
liquid columns 47

I
Ideal gas constant 56, 57
Ideal gas law 53
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IEU 13

In situ stress field 84, 85

Index notation 205, 206, 208

Inside diameter 7
Integrity tests 83

Intermediate casing burst loads
114–115

Intermediate casing collapse loads 113

Internal state variables 242

Internal upset (IU) 13

Internal yield pressure 143

International Organization for 
Standardization (ISO) 2

Isotropic hardening 240

Iterative technique 173

J
Joint length 7

Joint strength 164, 263

Jump out 14

K
Kick margin 92, 95

Kinematic hardening 241

Kronecker delta 210, 214, 227

L
Lamé elastic formulas 264

Lamé equations 351

Lamé solutions 255, 256

Landing practices 194

Lateral buckling 290–301

Leak-off pressure 85, 86

Leak-off tests 83

Linear elastic material 233

Liners 128

Load curves 136

Local bending 334

Lüder’s bands 238

M
Makeup torque 188
Manufacture of oil-field casing 2–6
Mass 22
Material behavior, types of

elastic 232
hyperelastic 232
linear elastic 232, 235
nonlinear elastic 232
plastic 232
plasticity 235–241
stress-strain curve 232
viscoelastic 232
viscoplastic 232
yield point 232

Matrices 208
Maximum bending stress 334

with connections 335
Maximum burst load method 118–122
Maximum hanging weight 196
Maximum load method 138
Maxwell, James Clerc 244
Measurements 31

accuracy 31
precision 31

Methane 53, 56, 112, 128
Mini-fracture tests 83, 85
Minimum cost 142

N
National Bureau of Standards 22
Necking-down 238
Neutral point 195, 296
Newtonian mechanics 216
Non-API grades 12
Normal forces 33

O
Orthogonal axes 211
Outside diameter 6
Overburden 79, 81
Over-pull 155, 156
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P
Partial derivatives 208
Partially collapsed casing 270
Permutation

even 210, 215
odd 210, 215
operator 215
symbol for 210

Pipe body yield 262
Pipe measurement 185
Pipe tally 185
Planar beam 332
Planar bending 331
Plane strain 85
Plastic collapse formula 272
Point contact 337
Point load 221
Poisson’s ratio 85, 235
Pore pressure 77, 79–82, 91, 92
Potential energy 294
Pound 22
Pound-force 21, 22
Pound-mass 21, 22, 23
Preliminary casing selection process

142–152
Preliminary selection 135
Principal stress components 227
Probability-based design method 202
Production casing

burst loads 124
collapse loads 124

Proportional limit 235

Q
Quench and temper 5

R
Radial buckling 290
Range convention 207
Rate-dependent materials 233
Real numbers 216
Reduced burst 164

Reduced collapse 173
Reduced collapse pressure 164
Reduced collapse rating 162, 165, 168
Reduced yield value 168
Rigid body 318
Rigid body motion 216

rotation 216
translation 216

Rockwell hardness 10
Rounding 30
Runge-Kutta method 324, 325, 327
Running procedures 186
Running speed 192

S
Saint-Venant’s principle 226
Scalar 213
Seamless casing 2–3
Second area moment 336
Second-order tensor 224
Shear forces 33
Sign convention 230
Significant figures 29
Soft string assumptions 322
Spatial coordinate 208
Specific weight 24
Spiders 190
Stabbing process 187
Stability 290

conditionally stable equilibrium
290

neutrally stable equilibrium 290
unstable equilibrium 291

Stability condition 295
Stable equilibrium 290
Strain 216, 217

Cauchy infinitesimal 217, 218
Eulerian 220
Lagrangian 220

Strain gauge 237
Strain hardening 238, 240
Strain softening 238
Strength treatment of casing 5
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Stress 221
deviatoric 228
hydrostatic 228
spherical 228

Stress field 225
Stress invariants 227
Structural design 202
Summation convention 206
Surface casing burst loads 109–110
Surface casing collapse loads 108–110
Surface forces 33
Système International d’Unités (SI) 21

T
Tagging bottom 193
Taylor method 325, 327
Taylor series 324
Temperature changes 154, 302
Tensile design 155

strength 262–263
Tensor

deviatoric stress 229
second-order 225
stress 225, 227, 229

Thermal effects 302–309
Thread

locking 189
lubricant 188
protectors 184

Thread locking 188
Tieback strings 128
Time 216
Torsion 257
Torsional buckling 290
Tortuosity 328
Traction 221
Traction vector 221, 225
Transition collapse formula 272
Transition equations 343
Transport 183
Triaxial casing design 249
True axial load 59, 60, 61, 65, 68, 74, 

156, 157, 158, 195, 323

Tubing leak 127, 128, 141

U
Undercompacted formation 80, 81
Underream 101
Unit basis vectors 212
Units of measure 21–32

fluid density 25
mass 22
pound 22
pound-force 21, 22
pound-mass 21, 22, 23
weight 22

Units, systems of
absolute system 22, 23
British gravitational system 22, 

23
engineering system 22
English engineering system 22, 

23
National Bureau of Standards 22
Système International d’Unités 

(SI) 21
Upset 13

V
Vacuum 75
Vector 211
Vector space 216
Vector transformation 222
Voigt notation 234
Von Mises ellipse 167
Von Mises yield criterion 163, 244, 

248, 264, 279, 351
Von Mises yield surface 246

W
Wall thickness 7
Wear 150
Weight 22
Welded casing 3–5
Well bore
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curvature 335
inclination 154
size selection 97–100

Woods model 293, 296
Wrap contact 337

Y
Yield collapse formula 271

Yield criteria 244
Yield indicator 245, 246
Yield point 235
Yield strength 203
Yield stress 203
Yield surface 240, 244
Young’s modulus 26, 27, 28, 231
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