Formulas and Calculations for Drilling, Production and Work-over

Norton J. Lapeyrouse

CONTENTS

Chapter 1

Basic Formulas
P. 3

1. Pressure Gradient
2. Hydrostatic Pressure
3. Converting Pressure into Mud Weight
4. Specific Gravity
5. Equivalent Circulating Density
6. Maximum Allowable Mud Weight
7. Pump Output
8. Annular Velocity
9. Capacity Formula
10. Control Drilling
11. Buoyancy Factor 12. Hydrostatic Pressure Decrease POOH
12. Loss of Overbalance Due to Falling Mud Level
13. Formation Temperature
14. Hydraulic Horsepower
15. Drill Pipe/Drill Collar Calculations
16. Pump Pressure/ Pump Stroke
17. Relationship
18. Cost Per Foot
19. Temperature Conversion Formulas

Chapter 2

Basic Calculations
P. 25

1. Volumes and Strokes
2. Slug Calculations
3. Accumulator Capacity - Usable Volume Per Bottle
4. Bulk Density of Cuttings (Using Mud Balance)
5. Drill String Design (Limitations)
6. Ton-Mile (TM) Calculations
7. Cementing Calculations
8. Weighted Cement Calculations
9. Calculations for the Number of Sacks of Cement Required
10. Calculations for the Number of Feet to Be Cemented
11. Setting a Balanced Cement Plug
12. Differential Hydrostatic Pressure Between Cement in the Annulus and Mud Inside the Casing
13. Hydraulicing Casing
14. Depth of a Washout
15. Lost Returns - Loss of Overbalance
16. Stuck Pipe Calculations
17. Calculations Required for Spotting Pills
18. Pressure Required to Break Circulation

Chapter 3
 Drilling Fluids
 P. 63

1. Increase Mud Weight
2. Dilution
3. Mixing Fluids of Different Densities
4. Oil Based Mud Calculations
5. Solids Analysis
6. Solids Fractions
7. Dilution of Mud System
8. Displacement - Barrels of Water/Slurry Required
9. Evaluation of Hydrocyclone
10. Evaluation of Centrifuge
Chapter 4
Pressure ControlP. 81
11. Kill Sheets \& Related Calculations
12. Pre-recorded Information
13. Kick Analysis
14. Pressure Analysis
15. Stripping/Snubbing Calculations
16. Sub-sea Considerations
17. Work-over Operations
Chapter 5 Engineering Calculations P. 124
18. Bit Nozzle selection - Optimised Hydraulics
19. Hydraulics Analysis
20. Critical Annular Velocity \& Critical Flow Rate
21. "D" Exponent
22. Cuttings Slip Velocity
23. Surge \& Swab Pressures
24. Equivalent Circulating Density
25. Fracture Gradient Determination - Surface Application
26. Fracture Gradient Determination - Sub-sea Application
27. Directional Drilling Calculations
28. Miscellaneous Equations \& Calculations
Appendix A P. 157
Appendix B P. 164
Index P. 167

CHAPTER ONE

BASIC FORMULAS

1.

Pressure gradient, psi/ft, using mud weight, ppg
$\mathrm{psi} / \mathrm{ft}=$ mud weight, $\mathrm{ppg} \times 0.052 \quad$ Example: 12.0 ppg fluid
$\mathrm{psi} / \mathrm{ft}=12.0 \mathrm{ppg} \times 0.052$
$\mathrm{psi} / \mathrm{ft}=0.624$

Pressure gradient, psi/ft, using mud weight, $\mathbf{l b} / \mathbf{f t}^{3}$

```
\(\mathrm{psi} / \mathrm{ft}=\mathrm{mud}\) weight, \(\mathrm{lb} / \mathrm{ft}^{3} \times 0.006944\)
    Example: \(100 \mathrm{lb} / \mathrm{ft}^{3}\) fluid
\(\mathrm{psi} / \mathrm{ft}=100 \mathrm{lb} / \mathrm{ft}^{3} \times 0.006944\)
\(\mathrm{psi} / \mathrm{ft}=0.6944\)
```

OR

```
\(\mathrm{psi} / \mathrm{ft}=\) mud weight, \(\mathrm{lb} / \mathrm{ft}^{3} \div 144 \quad\) Example: \(100 \mathrm{lb} / \mathrm{ft}^{3}\) fluid
\(\mathrm{psi} / \mathrm{ft}=100 \mathrm{lb} / \mathrm{ft}^{3} \div 144\)
\(\mathrm{psi} / \mathrm{ft}=0.6944\)
```


Pressure gradient, psi/ft, using mud weight, specific gravity (SG)

```
psi/ft = mud weight, SG x 0.433 Example:1.0 SG fluid
psi/ft = 1.0 SG x 0.433
psi/ft = 0.433
```


Convert pressure gradient, psi/ft, to mud weight, ppg

```
ppg \(=\) pressure gradient, \(\mathrm{psi} / \mathrm{ft} \div 0.052\)
                                    Example: 0.4992 psi/ft
ppg \(=0.4992 \mathrm{psi} / \mathrm{ft} \div 0.052\)
\(\mathrm{ppg}=9.6\)
```

Convert pressure gradient, psi/ft, to mud weight, $\mathrm{lb} / \mathrm{ft}^{\mathbf{3}}$
$\mathrm{lb} / \mathrm{ft}^{3}=$ pressure gradient, $\mathrm{psi} / \mathrm{ft} \div 0.006944 \quad$ Example: $0.6944 \mathrm{psi} / \mathrm{ft}$
$\mathrm{lb} / \mathrm{ft}^{3}=0.6944 \mathrm{psi} / \mathrm{ft} \div 0.006944$
$\mathrm{lb} / \mathrm{ft}^{3}=100$

Convert pressure gradient, psi/ft, to mud weight, SG

$\mathrm{SG}=$ pressure gradient, psi/ft 0.433 Example: $0.433 \mathrm{psi} / \mathrm{ft}$
SG $0.433 \mathrm{psi} / \mathrm{ft} \div 0.433$
SG $=1.0$

2.

 Hydrostatic Pressure (HP)
Hydrostatic pressure using ppg and feet as the units of measure

HP = mud weight, ppg x $0.052 \times$ true vertical depth (TVD), ft
Example: mud weight $=13.5 \mathrm{ppg} \quad$ true vertical depth $=12,000 \mathrm{ft}$
$\mathrm{HP}=13.5 \mathrm{ppg} \times 0.052 \times 12,000 \mathrm{ft}$
$\mathrm{HP}=8424 \mathrm{psi}$

Hydrostatic pressure, psi, using pressure gradient, psi/ft

$\mathrm{HP}=\mathrm{psi} / \mathrm{ft} \mathrm{x}$ true vertical depth, ft
Example: Pressure gradient $=0.624 \mathrm{psi} / \mathrm{ft} \quad$ true vertical depth $=8500 \mathrm{ft}$
$\mathrm{HP}=0.624 \mathrm{psi} / \mathrm{ft} \times 8500 \mathrm{ft}$
$\mathrm{HP}=5304 \mathrm{psi}$
Hydrostatic pressure, psi, using mud weight, $\mathrm{lb} / \mathrm{ft}^{\mathbf{3}}$
$\mathrm{HP}=$ mud weight, $1 \mathrm{~b} / \mathrm{ft}^{3} \times 0.006944 \times$ TVD, ft
Example: mud weight $=90 \mathrm{lb} / \mathrm{ft}^{3} \quad$ true vertical depth $=7500 \mathrm{ft}$
$\mathrm{HP}=90 \mathrm{lb} / \mathrm{ft}^{3} \times 0.006944 \times 7500 \mathrm{ft}$
$\mathrm{HP}=4687 \mathrm{psi}$
Hydrostatic pressure, psi, using meters as unit of depth
HP = mud weight, ppg $\times 0.052 \times$ TVD, $m \times 3.281$
Example: Mud weight $=12.2 \mathrm{ppg}$ true vertical depth $=3700$ meters
$\mathrm{HP}=12.2 \mathrm{ppg} \times 0.052 \times 3700 \times 3.281$
$\mathrm{HP}=7,701 \mathrm{psi}$

3. Converting Pressure into Mud Weight

Convert pressure, psi, into mud weight, ppg using feet as the unit of measure

mud weight, $\mathrm{ppg}=$ pressure, $\mathrm{psi} \div 0.052+\mathrm{TVD}, \mathrm{ft}$
Example: pressure $=2600 \mathrm{psi} \quad$ true vertical depth $=5000 \mathrm{ft}$
mud, ppg $=2600 \mathrm{psi} \div 0.052 \div 5000 \mathrm{ft}$
mud $=10.0 \mathrm{ppg}$

Convert pressure, psi, into mud weight, ppg using meters as the unit of measure

mud weight, ppg $=$ pressure, $\mathrm{psi} \div 0.052 \div$ TVD, $\mathrm{m}+3.281$
Example: pressure $=3583 \mathrm{psi}$ true vertical depth $=2000$ meters
mud wt, $\mathrm{ppg}=3583 \mathrm{psi} \div 0.052 \div 2000 \mathrm{~m} \div 3.281$
mud wt $=10.5 \mathrm{ppg}$

4. Specific Gravity (SG)

Specific gravity using mud weight, ppg

$\mathrm{SG}=$ mud weight, $\mathrm{ppg}+8.33 \quad$ Example: 15.0 ppg fluid
$\mathrm{SG}=15.0 \mathrm{ppg} \div 8.33$
$\mathrm{SG}=1.8$

Specific gravity using pressure gradient, psi/ft

$\mathrm{SG}=$ pressure gradient, psi/ft $0.433 \quad$ Example: pressure gradient $=0.624 \mathrm{psi} / \mathrm{ft}$
$\mathrm{SG}=0.624 \mathrm{psi} / \mathrm{ft} \div 0.433$
$\mathrm{SG}=1.44$

Specific gravity using mud weight, $\mathrm{lb} / \mathrm{ft}^{\mathbf{3}}$

$\mathrm{SG}=$ mud weight, $\mathrm{lb} / \mathrm{ft}^{3} \div 62.4 \quad$ Example: Mud weight $=120 \mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{SG}=120 \mathrm{lb} / \mathrm{ft}^{3}+62.4$
$\mathrm{SG}=1.92$

Convert specific gravity to mud weight, ppg

mud weight, ppg $=$ specific gravity x $8.33 \quad$ Example: \quad specific gravity $=1.80$
mud wt, ppg $=1.80 \times 8.33$
mud wt $\quad=15.0 \mathrm{ppg}$
Convert specific gravity to pressure gradient, psi/ft
$\mathrm{psi} / \mathrm{ft}=$ specific gravity $\mathrm{x} 0.433 \quad$ Example: \quad specific gravity $=1.44$
$\mathrm{psi} / \mathrm{ft}=1.44 \times 0.433$
$\mathrm{psi} / \mathrm{ft}=0.624$

Convert specific gravity to mud weight, $\mathbf{l b / f t}{ }^{3}$

$\mathrm{lb} / \mathrm{ft}^{3}=$ specific gravity $\times 62.4$
Example: \quad specific gravity $=1.92$
$\mathrm{lb} / \mathrm{ft}^{3}=1.92 \times 62.4$
$\mathrm{lb} / \mathrm{ft}^{3}=120$

5. Equivalent Circulating Density (ECD), ppg

ECD $, \mathrm{ppg}=($ annular pressure, loss, psi $) \div 0.052 \div \mathrm{TVD}, \mathrm{ft}+$ (mud weight, in use, ppg)
Example: annular pressure loss $=200 \mathrm{psi} \quad$ true vertical depth $=10,000 \mathrm{ft}$
ECD, ppg $=200 \mathrm{psi} \div 0.052 \div 10,000 \mathrm{ft}+9.6 \mathrm{ppg}$
ECD $\quad=10.0 \mathrm{ppg}$

6. Maximum Allowable Mud Weight from Leak-off Test Data

ppg $=($ Leak-off Pressure, psi$) \div 0.052 \div($ Casing Shoe TVD, ft$)+($ mud weight, ppg $)$
Example: leak-off test pressure $=1140 \mathrm{psi} \quad$ casing shoe TVD $=4000 \mathrm{ft}$ Mud weight $\quad=10.0 \mathrm{ppg}$
ppg $=1140 \mathrm{psi} \div 0.052 \div 4000 \mathrm{ft}+10.0 \mathrm{ppg} \mathrm{ppg}=15.48$

7. Pump Output (P0)

Triplex Pump Formula 1

$\mathrm{PO}, \mathrm{bbl} / \mathrm{stk}=0.000243 \mathrm{x}$ (liner diameter, in. $)^{2} \mathrm{X}$ (stroke length, in.)
Example: Determine the pump output, bbl/stk, at 100% efficiency for a 7 -in, by 12 -in, triplex pump:

PO @ $100 \%=0.000243 \times 72 \times 12$
PO @ $100 \%=0.142884 \mathrm{bbl} / \mathrm{stk}$
Adjust the pump output for 95% efficiency: \quad Decimal equivalent $=95 \div 100=0.95$
PO @ $95 \%=0.142884 \mathrm{bbl} / \mathrm{stk} \times 0.95$
PO @ $95 \%=0.13574 \mathrm{bbl} / \mathrm{stk}$

Formula 2

PO, gpm $=\left[3\left(7^{2} \times 0.7854\right)\right.$ S] $0.00411 \times$ SPM
where $\mathrm{D}=$ liner diameter, in. $\quad \mathrm{S}=$ stroke length, in. $\quad \mathrm{SPM}=$ strokes per minute
Example: Determine the pump output, gpm, for a 7 -in, by 12 -in, triplex pump at 80 strokes per minute:

$$
\begin{aligned}
& \text { PO, } \text { gpm }=[3(72 \times 0.7854) 12] 0.00411 \times 80 \\
& \text { PO, } \mathrm{gpm}=1385.4456 \times 0.00411 \times 80 \\
& \mathrm{PO}
\end{aligned}=455.5 \mathrm{gpm} .
$$

Duplex Pump Formula 1

$$
\begin{array}{r}
0.000324 \times(\text { Liner Diameter, in. })^{2} \times(\text { stroke length, in. })= \\
\left.-0.000162 \times(\text { Liner Diameter, in. })^{2} \times \text { (stroke length, in. }\right)= \\
\text { Pump output @ } 100 \% \mathrm{eff}= \\
\mathrm{bbl} / \mathrm{stk} \\
\mathrm{bbl} / \mathrm{stk} \\
\mathrm{bbl} / \mathrm{stk}
\end{array}
$$

Example: Determine the output, bbl/stk, of a 5-1/2 in, by $14-\mathrm{in}$, duplex pump at 100% efficiency. Rod diameter $=2.0$ in.:
$0.000324 \times 5.5^{2} \times 14=0.137214 \mathrm{bbl} / \mathrm{stk}$
$-0.000162 \times 2.0^{2} \times 14=0.009072 \mathrm{bbl} / \mathrm{stk}$
pump output 100% eff $=0.128142 \mathrm{bbl} / \mathrm{stk}$
Adjust pump output for 85% efficiency:
Decimal equivalent $=85 \div 100=0.85$
PO @ $85 \%=0.128142 \mathrm{bbl} /$ stk $\times 0.85$
PO @ $85 \%=0.10892 \mathrm{bbl} /$ stk

Formula 2

$\mathrm{PO}, \mathrm{bbl} / \mathrm{stk}=0.000162 \times \mathrm{S}\left[2(\mathrm{D})^{2}-\mathrm{d}^{2}\right]$
where $\mathrm{D}=$ liner diameter, in. $\quad \mathrm{S}=$ stroke length, in. $\quad \mathrm{SPM}=$ strokes per minute
Example: Determine the output, bbl/stk, of a $5-1 / 2-\mathrm{in}$, by $14-\mathrm{in}$, duplex pump 100% efficiency. Rod diameter - 2.0 in .:
PO @ $100 \%=0.000162 \times 14 \times\left[2(5.5)^{2}-2^{2}\right]$
PO @ $100 \%=0.000162 \times 14 \times 56.5$
PO @ $100 \%=0.128142 \mathrm{bbl} / \mathrm{stk}$
Adjust pump output for 85% efficiency:
PO @ $85 \%=0.128142 \mathrm{bbl} /$ stk x 0.85
PO @ $85 \%=0.10892 \mathrm{bbl} / \mathrm{stk}$
8.

Annular Velocity (AV)

Annular velocity (AV), ft/min

Formula 1

$\mathrm{AV}=$ pump output, $\mathrm{bbl} / \mathrm{min} \div$ annular capacity, $\mathrm{bbl} / \mathrm{ft}$
Example: pump output $=12.6 \mathrm{bbl} / \mathrm{min}$ annular capacity $=0.1261 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{AV}=12.6 \mathrm{bbl} / \mathrm{min} \div 0.1261 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{AV}=99.92 \mathrm{ft} / \mathrm{mm}$

Formula 2

$$
\mathrm{AV}, \mathrm{ft} / \mathrm{mm}=\frac{24.5 \times \mathrm{Q}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}
$$

where $\mathrm{Q}=$ circulation rate, gpm, $\quad \mathrm{Dh}=$ inside diameter of casing or hole size, in.
$\mathrm{Dp}=$ outside diameter of pipe, tubing or collars, in.
Example: pump output $=530 \mathrm{gpm}$ hole size $=12-1 / 4 \mathrm{th}$. pipe $\mathrm{OD}=4-1 / 2 \mathrm{in}$.

$$
\mathrm{AV}=\frac{24.5 \times 530}{12.25^{2}-45^{2}}
$$

$$
\mathrm{AV}=\underline{12,985}
$$

$$
\overline{129.8125}
$$

$\mathrm{AV}=100 \mathrm{ft} / \mathrm{mm}$

Formula 3

$$
\mathrm{AV}, \mathrm{ft} / \min =\frac{\mathrm{PO}, \mathrm{bbl} / \min \times 1029.4}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}
$$

Example: pump output $=12.6 \mathrm{bbl} / \mathrm{min}$ hole size $=12-1 / 4 \mathrm{in} . \quad$ pipe $\mathrm{OD}=4-1 / 2 \mathrm{in}$.
$\mathrm{AV}=\underline{12.6 \mathrm{bbl} / \mathrm{min} \times 1029.4}$
$12.25^{2}-45^{2}$

$$
\mathrm{AV}=12970.44
$$

$$
129.8125
$$

$\mathrm{AV}=99.92 \mathrm{ft} / \mathrm{mm}$

Annular velocity (AV), ft/sec

$$
\mathrm{AV}, \mathrm{ft} / \mathrm{sec}=\frac{17.16 \times \mathrm{PO}, \mathrm{bbl} / \mathrm{min}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}
$$

Example: pump output $=12.6 \mathrm{bbl} / \mathrm{min}$ hole size $=12-1 / 4 \mathrm{in}$. pipe $\mathrm{OD}=4-1 / 2 \mathrm{in}$.

$$
\mathrm{AV}=\frac{17.16 \times 12.6 \mathrm{bbl} / \mathrm{min}}{12.25^{2}-45^{2}}
$$

$\mathrm{AV}=\underline{216.216}$
129.8125
$\mathrm{AV}=1.6656 \mathrm{ft} / \mathrm{sec}$

Pump output, gpm, required for a desired annular velocity, ft/mm

where $\mathrm{AV}=$ desired annular velocity, $\mathrm{ft} / \mathrm{min}$
$\mathrm{Dh}=$ inside diameter of casing or hole size, in.
$\mathrm{Dp}=$ outside diameter of pipe, tubing or collars, in.
Example: desired annular velocity $=120 \mathrm{ft} / \mathrm{mm}$ hole size $=12-1 / 4$ in pipe $\mathrm{OD}=4-1 / 2 \mathrm{in}$.
$\mathrm{PO}=\underline{120\left(12.25^{2}-45^{2}\right)}$
24.5
$\mathrm{PO}=\underline{120 \times 129.8125}$
24.5
$\mathrm{PO}=\frac{15577.5}{24.5}$
$\mathrm{PO}=635.8 \mathrm{gpm}$

Strokes per minute (SPM) required for a given annular velocity

$\mathrm{SPM}=$ annular velocity, $\mathrm{ft} / \mathrm{mm} \mathrm{x}$ annular capacity, $\mathrm{bbl} / \mathrm{ft}$ pump output, bbl/stk

Example. annular velocity $=120 \mathrm{ft} / \mathrm{min} \quad$ annular capacity $=0.1261 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{Dh}=12-1 / 4 \mathrm{in} . \quad \mathrm{Dp}=4-1 / 2 \mathrm{in}$. pump output $=0.136 \mathrm{bbl} / \mathrm{stk}$
$\mathrm{SPM}=120 \mathrm{ft} / \mathrm{mm} \times 0.1261 \mathrm{bbl} / \mathrm{ft}$
$0.136 \mathrm{bbl} / \mathrm{stk}$
$S P M=15.132$
0.136

SPM $=111.3$

Capacity Formulas

Annular capacity between casing or hole and drill pipe, tubing, or casing
a) Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}{1029.4}$

Example: Hole size $(\mathrm{Dh})=12-1 / 4 \mathrm{in}$. Drill pipe $\mathrm{OD}(\mathrm{Dp})=5.0 \mathrm{in}$.
Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{12.25^{2}-5.0^{2}}{1029.4}$
Annular capacity $=0.12149 \mathrm{bbl} / \mathrm{ft}$
b) Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{\left(\mathrm{Dh}^{2}-\mathrm{Dp}^{2}\right)}$

Example: Hole size $(\mathrm{Dh}) \quad=12-1 / 4 \mathrm{in}$. Drill pipe $\mathrm{OD}(\mathrm{Dp})=5.0 \mathrm{in}$.
Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\underline{1029.4}$

$$
\left(12.25^{2}-5.0^{2}\right)
$$

Annular capacity $=8.23 \mathrm{ft} / \mathrm{bbl}$
c) Annular capacity, gal/ft $=\mathrm{Dh}^{2}-\mathrm{Dp}^{2}$ 24.51

Example: \quad Hole size $(\mathrm{Dh})=12-1 / 4 \mathrm{in} . \quad$ Drill pipe $\mathrm{OD}(\mathrm{Dp})=5.0 \mathrm{in}$.
Annular capacity, gal $/ \mathrm{ft}=\frac{12.25^{2}-5.0^{2}}{24.51}$
Annular capacity $=5.1 \mathrm{gal} / \mathrm{ft}$
d) Annular capacity, ft/gal $=\frac{24.51}{\left(\mathrm{Dh}^{2}-\mathrm{Dp}^{2}\right)}$

Example: \quad Hole size $(\mathrm{Dh})=12-1 / 4 \mathrm{in}$. Drill pipe $\mathrm{OD}(\mathrm{Dp})=5.0 \mathrm{in}$.
Annular capacity, $\mathrm{ft} / \mathrm{gal}=\frac{24.51}{\left(12.25^{2}-5.0^{2}\right)}$
Annular capacity, $\mathrm{ft} / \mathrm{gal}=0.19598 \mathrm{ft} / \mathrm{gal}$
e) Annular capacity, $\mathrm{ft}^{3} / \operatorname{Inft}-\mathrm{Dh}^{2}-\mathrm{Dp}^{2}$ 183.35

Example: Hole size $(\mathrm{Dh})=12-1 / 4 \mathrm{in}$. Drill pipe $\mathrm{OD}(\mathrm{Dp})=5.0 \mathrm{in}$.
Annular capacity, $\mathrm{ft}^{3} / \mathrm{linft}=\frac{12.25^{2}-5.0^{2}}{183.35}$ 183.35

Annular capacity $=0.682097 \mathrm{ft}^{3} / \mathrm{linft}$
f) Annular capacity, linft/ft ${ }^{3}=\frac{183.35}{\left(\mathrm{Dh}^{2}-\mathrm{Dp}^{2}\right)}$

Example: Hole size $(\mathrm{Dh})=12-1 / 4 \mathrm{in}$. Drill pipe $\mathrm{OD}(\mathrm{Dp})=5.0 \mathrm{in}$.
Annular capacity, linft/ft ${ }^{3}=\underline{183.35}$

$$
\left(12.25^{2}-5.0^{2}\right)
$$

Annular capacity $=1.466 \mathrm{linft} / \mathrm{ft}^{3}$

Annular capacity between casing and multiple strings of tubing

a) Annular capacity between casing and multiple strings of tubing, bbl/ft:

Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{Dh}^{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]}{1029.4}$
Example: Using two strings of tubing of same size:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-7.0 \mathrm{in} .-29 \mathrm{lb} / \mathrm{ft} & \mathrm{ID}=6.184 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } 1-2-3 / 8 \mathrm{in} . & \mathrm{OD}=2.375 \mathrm{in} . \\
\mathrm{T}_{2}=\text { tubing No. } 2-2-3 / 8 \mathrm{in.} & \mathrm{OD}=2.375 \mathrm{in.} .
\end{array}
$$

Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{6.1842-\left(2.375^{2}+2.375^{2}\right)}{1029.4}$
Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{38.24-11.28}{1029.4}$
Annular capacity $\quad=0.02619 \mathrm{bbl} / \mathrm{ft}$
b) Annular capacity between casing and multiple strings of tubing, ft/bbl:

Annular capacity, ft/bbl $=\frac{1029.4}{\mathrm{Dh}^{2}-}\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]$
Example: Using two strings of tubing of same size:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-7.0 \mathrm{in} .-29 \mathrm{lb} / \mathrm{ft} & \mathrm{ID}=6.184 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } 1-2-3 / 8 \mathrm{in} . & \mathrm{OD}=2.375 \mathrm{in} . \\
\mathrm{T}_{2}=\text { tubing No. } 2-2-3 / 8 \mathrm{in} . & \mathrm{OD}=2.375 \mathrm{in} .
\end{array}
$$

Annular capacity ft/bbl $=1029.4$

$$
6.184^{2}-\left(2.375^{2}+2.375^{2}\right)
$$

Annular capacity, ft/bbl $=\frac{1029.4}{38.24}-11.28$
Annular capacity $\quad=38.1816 \mathrm{ft} / \mathrm{bbl}$
c) Annular capacity between casing and multiple strings of tubing, gal/ft:

Annular capacity, gal/ft $=\underline{\mathrm{Dh}^{2}-\left[(\mathrm{T} \sim)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]}$
24.51

Example: Using two tubing strings of different size:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-7.0 \mathrm{in} .-29 \mathrm{lb} / \mathrm{ft} & \mathrm{ID}=6.184 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } 1-2-3 / 8 \mathrm{in} . & \mathrm{OD}=2.375 \mathrm{in} . \\
\mathrm{T}_{2}=\text { tubing No. } 2-3-1 / 2 \mathrm{in} . & \mathrm{OD}=3.5 \mathrm{in} .
\end{array}
$$

Annular capacity, gal/ft $=6.1842-\left(2.375^{2}+3.5^{2}\right)$ 24.51

Annular capacity, gal/ft $=\frac{38.24-17.89}{24.51}$
Annular capacity $\quad=0.8302733 \mathrm{gal} / \mathrm{ft}$
d) Annular capacity between casing and multiple strings of tubing, $\mathrm{ft} / \mathrm{gal}$:

Annular capacity, $\mathrm{ft} / \mathrm{gal}=\underline{24.51}$

$$
\mathrm{Dh}^{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}\right]
$$

Example: Using two tubing strings of different sizes:

$$
\begin{array}{ll}
\mathrm{Dh}=\text { casing }-7.0 \mathrm{in} .-29 \mathrm{lb} / \mathrm{ft} & \mathrm{ID}=6.184 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } \mathrm{I}-2-3 / 8 \mathrm{in} . & \mathrm{OD}=2.375 \mathrm{in} . \\
\mathrm{T}_{2}=\text { tubing No. } 2-3-1 / 2 \mathrm{in} . & \mathrm{OD}=3.5 \mathrm{in} .
\end{array}
$$

Annular capacity, $\mathrm{ft} / \mathrm{gal}=\underline{24.51}$

$$
6.184^{2}-\left(2.375^{2}+3.5^{2}\right)
$$

Annular capacity, $\mathrm{ft} / \mathrm{gal}=\underline{24.51}$
$38.24-17.89$
Annular capacity $\quad=1.2044226 \mathrm{ft} / \mathrm{gal}$
e) Annular capacity between casing and multiple strings of tubing, $\mathrm{ft}^{3} / \mathrm{linft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{linft}=\mathrm{Dh}^{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}+\left(\mathrm{T}_{3}\right)^{2}\right]$ 183.35

Example: Using three strings of tubing:
$\mathrm{Dh}=$ casing $-9-5 / 8 \mathrm{in} .-47 \mathrm{lb} / \mathrm{ft} \mathrm{ID}=8.681 \mathrm{in}$.
$\mathrm{T}_{1}=$ tubing No. $1-3-1 / 2 \mathrm{in}$. $-\mathrm{OD}=3.5 \mathrm{in}$.
$\mathrm{T}_{2}=$ tubing No. $2-3-1 / 2 \mathrm{in} .-\mathrm{OD}=3.5 \mathrm{in}$.
$\mathrm{T}_{3}=$ tubing No. $3-3-1 / 2 \mathrm{in}$. $-\mathrm{OD}=3.5 \mathrm{in}$.
Annular capacity $=\frac{8.6812-\left(35^{2}+35^{2}+35^{2}\right)}{183.35}$
Annular capacity, $\mathrm{ft}^{3} / \mathrm{linft}=\frac{75.359-36.75}{183.35}$
Annular capacity $\quad=0.2105795 \mathrm{ft}^{3} / \mathrm{linft}$
f) Annular capacity between casing and multiple strings of tubing, linft/ft ${ }^{3}$:

Annular capacity, linft/ft ${ }^{3}=\underline{183.35}$

$$
\mathrm{Dh}_{2}-\left[\left(\mathrm{T}_{1}\right)^{2}+\left(\mathrm{T}_{2}\right)^{2}+\left(\mathrm{T}_{3}\right)^{2}\right]
$$

Example: Using three strings tubing of same size:

$$
\begin{array}{lll}
\mathrm{Dh}=\text { casing } 9-5 / 8 \mathrm{in} . & 47 \mathrm{lb} / \mathrm{ft} & \mathrm{ID}=8.681 \mathrm{in} . \\
\mathrm{T}_{1}=\text { tubing No. } 1 & 3-1 / 2 \mathrm{in.} & \mathrm{OD}=3.5 \mathrm{in.} \\
\mathrm{~T}_{2}=\text { tubing No. } 2 & 3-1 / 2 \mathrm{in.} & \mathrm{OD}=3.5 \mathrm{in} . \\
\mathrm{T}_{3}=\text { tubing No. } 3 & 3-1 / 2 \mathrm{in.} & \mathrm{OD}=3.5 \mathrm{in.}
\end{array}
$$

Annular capacity $\quad=\frac{183.35}{8.681^{2}}-\left(35^{2}+35^{2}+35^{2}\right)$
Annular capacity, linft/ft ${ }^{3}=\underline{183.35}$

Annular capacity $\quad=4.7487993$ linft $/ \mathrm{ft}^{3}$

Capacity of tubulars and open hole: drill pipe, drill collars, tubing, casing, hole, and any cylindrical object
a) Capacity, $\mathrm{bbl} / \mathrm{ft}=\underline{\mathrm{ID} \text { in. } .^{2}}$ Example: Determine the capacity, bbl/ft, of a 12-1/4 in. hole: 1029.4

Capacity, $\mathrm{bbl} / \mathrm{ft}=\underline{1225^{2}}$

$$
1029.4
$$

Capacity $=0.1457766 \mathrm{bbl} / \mathrm{ft}$
b) Capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{\mathrm{Dh}^{2}} \quad$ Example: Determine the capacity, $\mathrm{ft} / \mathrm{bbl}$, of $12-1 / 4 \mathrm{in}$. hole:

Capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{12.25^{2}}$
Capacity $\quad=6.8598 \mathrm{ft} / \mathrm{bbl}$
c) Capacity, gal/ft $=\underline{\mathrm{ID}}$ in. ${ }^{2} \quad$ Example: Determine the capacity, gal/ft, of $8-1 / 2$ in. hole:

Capacity, gal/ft $=\underline{8.5^{2}}$ 24.51

Capacity $\quad=2.9477764 \mathrm{gal} / \mathrm{ft}$
d) Capacity, ft/gal ID in 2 Example: Determine the capacity, ft/gal, of 8-1/2 in. hole:

Capacity, $\mathrm{ft} / \mathrm{gal}=\underline{2451}$

$$
8.5^{2}
$$

Capacity $\quad=0.3392 \mathrm{ft} / \mathrm{gal}$
e) Capacity, $\mathrm{ft}^{3} / \mathrm{linft}=\frac{\mathrm{ID}^{2}}{18135} \quad$ Example: Determine the capacity, $\mathrm{ft}^{3} / \mathrm{linft}$, for a 6.0 in . hole:

Capacity, $\mathrm{ft}^{3} / \mathrm{Inft}=\frac{6.0^{2}}{183.35}$
Capacity $\quad=0.1963 \mathrm{ft}^{3} /$ linft
f) Capacity, linftlft ${ }^{3}=\frac{183.35}{\mathrm{ID}, \mathrm{in.}^{2}} \quad$ Example: Determine the capacity, linft/ft ${ }^{3}$, for a 6.0 in . hole:

Capacity, unit $/ \mathrm{ft}^{3}=\frac{183.35}{6.0^{2}}$
Capacity $\quad=5.09305 \mathrm{linft} / \mathrm{ft}^{3}$

Amount of cuttings drilled per foot of hole drilled

a) BARRELS of cuttings drilled per foot of hole drilled:

Barrels $=\frac{\mathrm{Dh}^{2}}{1029.4}(1-\%$ porosity $)$
Example: Determine the number of barrels of cuttings drilled for one foot of 12-1/4 in.
-hole drilled with 20% (0.20) porosity:
Barrels $=\frac{12.25^{2}}{1029.4}(1-0.20)$
Barrels $=0.1457766 \times 0.80$
Barrels $=0.1166213$
b) CUBIC FEET of cuttings drilled per foot of hole drilled:

Cubic feet $=\frac{\mathrm{Dh}^{2}}{144} \times 0.7854(1-\%$ porosity $)$

Example: Determine the cubic feet of cuttings drilled for one foot of 12-1/4 in. hole with 20% (0.20) porosity:

Cubic feet $=\frac{12.25^{2}}{144} \times 0.7854(1-0.20)$
Cubic feet $=\underline{150.0626} \times 0.7854 \times 0.80$ 144
c) Total solids generated:

Wcg $=350 \mathrm{Ch} \times \mathrm{L}(1-\mathrm{P}) \mathrm{SG}$
where $\mathrm{Wcg}=$ solids generated, pounds $\quad \mathrm{Ch}=$ capacity of hole, $\mathrm{bbl} / \mathrm{ft}$
$\mathrm{L}=$ footage drilled, $\mathrm{ft} \quad \mathrm{SG}=$ specific gravity of cuttings
$\mathrm{P}=$ porosity, $\%$
Example: Determine the total pounds of solids generated in drilling 100 ft of a 12-1/4 in.
hole $(0.1458 \mathrm{bbl} / \mathrm{ft})$. Specific gravity of cuttings $=2.40 \mathrm{gm} / \mathrm{cc}$. Porosity $=20 \%$:
$\mathrm{Wcg}=350 \times 0.1458 \times 100(1-0.20) \times 2.4$
$\mathrm{Wcg}=9797.26$ pounds

10.

Control Drilling

Maximum drilling rate (MDR), $\mathrm{ft} / \mathrm{hr}$, when drifting large diameter holes (143/4 in. and larger)
$\mathrm{MDR}, \mathrm{ft} / \mathrm{hr}=\frac{67 \mathrm{x}(\text { mud wt out, } \mathrm{ppg}-\text { mud wt in, } \mathrm{ppg}) \times(\text { circulation rate, } \mathrm{gpm})}{\mathrm{Dh}^{2}}$
Example: Determine the MDR, ft/hr, necessary to keep the mud weight coming out at 9.7 ppg at the flow line:

Data: Mud weight in $=9.0 \mathrm{ppg} \quad$ Circulation rate $=530 \mathrm{gpm} \quad$ Hole size $=17-1 / 2 \mathrm{in}$.
$\mathrm{MDR}, \mathrm{ft} / \mathrm{hr}=\frac{67(9.7-9.0) 530}{17.5^{2}}$
$\mathrm{MDR}, \mathrm{ft} / \mathrm{hr}=\frac{67 \times 0.7 \times 530}{306.25}$
$\mathrm{MDR}, \mathrm{ft} / \mathrm{hr}=\frac{24,857}{306.25}$
MDR $\quad=81.16 \mathrm{ft} / \mathrm{hr}$

11.

Buoyancy Factor (BF)

Buoyancy factor using mud weight, ppg

$\mathrm{BF}=\frac{65.5-\text { mud weight, } \mathrm{ppg}}{65.5}$
Example: Determine the buoyancy factor for a 15.0 ppg fluid:
$\mathrm{BF}=\frac{65.5-15.0}{65.5}$
$\mathrm{BF}=0.77099$

Buoyancy factor using mud weight, $\mathbf{l b} / \mathbf{f t}^{3}$

$\mathrm{BF}=\frac{489-\text { mud weight, } \mathrm{lb} / \mathrm{ft}^{3}}{489}$
Example: Determine the buoyancy factor for a $120 \mathrm{lb} / \mathrm{ft}^{3}$ fluid:
$\mathrm{BF}=\frac{489-120}{489}$
$\mathrm{BF}=0.7546$

12. Hydrostatic Pressure (HP) Decrease When POOH

When pulling DRY pipe

Step 1 Barrels $=\underset{\text { stands pulled }}{\text { number of }} \quad \begin{gathered}\mathrm{X} \\ \text { per stand, } \mathrm{ft}\end{gathered} \quad \begin{aligned} & \text { average length } \\ & \text { displaced } \mathrm{bbl} / \mathrm{ft}\end{aligned}$

Step 2

HP psi decrease $=\frac{\text { barrels displaced }}{(\text { casing capacity }- \text { pipe displacement })} \times$ $\mathrm{bbl} / \mathrm{ft} \quad \mathrm{bbl} / \mathrm{ft}$

Example: Determine the hydrostatic pressure decrease when pulling DRY pipe out of the hole:

Number of stands pulled $=5 \quad$ Pipe displacement $=0.0075 \mathrm{bbl} / \mathrm{ft}$
Average length per stand $=92 \mathrm{ft} \quad$ Casing capacity $\quad=0.0773 \mathrm{bbl} / \mathrm{ft}$
Mud weight $\quad=11.5 \mathrm{ppg}$

Step 1

Barrels displaced $=5$ stands x $92 \mathrm{ft} / \mathrm{std} \times 0.0075 \mathrm{bbl} / \mathrm{ft}$ displaced
Barrels displaced $=3.45$

Step 2

$$
\mathrm{HP}, \text { psi decrease }=\underline{3.45 \text { barrels }} \times 0.052 \times 11.5 \mathrm{ppg}
$$

HP , psi decrease $=\frac{3.45 \text { barrels }}{0.0698} \times 0.052 \times 11.5 \mathrm{ppg}$
HP decrease $\quad=29.56 \mathrm{psi}$

When pulling WET pipe

Step 1

Barrels displaced $=$ number of $\quad \mathrm{X}$ average length X (pipe disp., bbl/ft + pipe cap., bbl/ft) stands pulled per stand, ft

Step 2

$\mathrm{HP}, \mathrm{psi}=\frac{\text { barrels displaced }}{\text { (casing capacity) }-(\text { Pipe disp., }+\underset{\mathrm{bbl} / \mathrm{ft}}{\text { pipe cap., })}}$
Example: Determine the hydrostatic pressure decrease when pulling WET pipe out of the hole:

Number of stands pulled	$=5$	Pipe displacement	$=0.0075 \mathrm{bbl} / \mathrm{ft}$
Average length per stand	$=92 \mathrm{ft}$	Pipe capacity	$=0.01776 \mathrm{bbl} / \mathrm{ft}$
Mud weight	$=11.5 \mathrm{ppg}$	Casing capacity	$=0.0773 \mathrm{bbl} / \mathrm{ft}$

Step 1

Barrels displaced $=5$ stands $\times 92 \mathrm{ft} / \mathrm{std} \times(.0075 \mathrm{bbl} / \mathrm{ft}+0.01776 \mathrm{bbl} / \mathrm{ft})$
Barrels displaced $=116196$

Step 2

$$
\text { HP, psi decrease }=\underline{11.6196 \text { barrels }} \times 0.052 \times 11.5 \mathrm{ppg}
$$

HP , psi decrease $=\underline{11.6196} \times 0.052 \times 11.5 \mathrm{ppg}$

HP decrease $=133.52 \mathrm{psi}$

13. Loss of Overbalance Due to Falling Mud Level

Feet of pipe pulled DRY to lose overbalance

Feet $=$ overbalance, $\mathrm{psi}($ casing cap. - pipe disp., bbl/ft $)$ mud wt., ppg x $0.052 \times$ pipe disp., bbl/ft

Example: Determine the FEET of DRY pipe that must be pulled to lose the overbalance using the following data:

Amount of overbalance	$=150 \mathrm{psi}$	Casing capacity	$=0.0773 \mathrm{bbl} / \mathrm{ft}$
Pipe displacement	$=0.0075 \mathrm{bbl} / \mathrm{ft}$	Mud weight	$=11.5 \mathrm{ppg}$

$\mathrm{Ft}=\underline{150 \mathrm{psi}(0.0773-0.0075)}$
$11.5 \mathrm{ppg} \times 0.052 \times 0.0075$
$\mathrm{Ft}=\frac{10.47}{0.004485}$
$\mathrm{Ft}=2334$

Feet of pipe pulled WET to lose overbalance

Feet $=$ overbalance, $\mathrm{psi} \times($ casing cap. - pipe cap. - pipe disp. $)$ mud wt., ppg x $0.052 \times$ (pipe cap. \div pipe disp., bbl/ft)

Example: Determine the feet of WET pipe that must be pulled to lose the overbalance using the following data:

Amount of overbalance	$=150 \mathrm{psi}$	Casing capacity$=0.0773 \mathrm{bbl} / \mathrm{ft}$
Pipe capacity	$=0.01776 \mathrm{bbl} / \mathrm{ft}$	Pipe displacement $=0.0075 \mathrm{bbl} / \mathrm{ft}$
Mud weight	$=11.5 \mathrm{ppg}$	

$$
\text { Feet }=\frac{150 \mathrm{psi} \times(0.0773-0.01776-0.0075 \mathrm{bbl} / \mathrm{ft})}{11.5 \mathrm{ppg} \times 0.052(0.01776+0.0075 \mathrm{bbl} / \mathrm{ft})}
$$

Feet $=\underline{150} \mathrm{psi} \times 0.05204$
$11.5 \mathrm{ppg} \times 0.052 \times 0.02526$
Feet $=\frac{7.806}{0.0151054}$
Feet $=516.8$

14. Formation Temperature (FT)

$\mathrm{FT},{ }^{\circ} \mathrm{F}=\left(\right.$ ambient surface temperature, $\left.{ }^{\circ} \mathrm{F}\right)+\left(\right.$ temp. increase ${ }^{\circ} \mathrm{F}$ per ft of depth x TVD, ft$)$

Example: If the temperature increase in a specific area is $0.012{ }^{\circ} \mathrm{F} / \mathrm{ft}$ of depth and the ambient surface temperature is $70^{\circ} \mathrm{F}$, determine the estimated formation temperature at a TVD of $15,000 \mathrm{ft}$:
$\mathrm{FT},{ }^{\circ} \mathrm{F}=70^{\circ} \mathrm{F}+\left(0.012{ }^{\circ} \mathrm{F} / \mathrm{ft} \mathrm{x} 15,000 \mathrm{ft}\right)$
$\mathrm{FT},{ }^{\circ} \mathrm{F}=70^{\circ} \mathrm{F}+180^{\circ} \mathrm{F}$
$\mathrm{FT} \quad=250^{\circ} \mathrm{F}$ (estimated formation temperature)

15. Hydraulic Horsepower (HHP)

$\mathrm{HHP}=\frac{\mathrm{P} \times \mathrm{Q}}{714}$
where $\mathrm{HHP}=$ hydraulic horsepower $\quad \mathrm{P}=$ circulating pressure, psi
Q = circulating rate, gpm
Example: \quad circulating pressure $=2950$ psi \quad circulating rate $=520 \mathrm{gpm}$
$H H P=\underline{2950 \times 520}$
1714
$\mathrm{HHP}=\frac{1,534,000}{1714}$
$\mathrm{HHP}=894.98$

16. Drill Pipe/Drill Collar Calculations

Capacities, $\mathbf{b b l} / \mathrm{ft}$, displacement, $\mathrm{bbl} / \mathrm{ft}$, and weight, $\mathrm{lb} / \mathrm{ft}$, can be calculated from the following formulas:

Capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{ID}, \mathrm{in}^{2}{ }^{2}}{1029.4}$
Displacement, bbl/ft $=\frac{\mathrm{OD}, \mathrm{in}^{2}-\mathrm{ID}, \mathrm{in.}^{2}}{1029.4}$
Weight, lb/ft = displacement, bbl/ft x 2747 lb/bbl

Example: Determine the capacity, bbl/ft, displacement, bbl/ft, and weight, lb/ft, for the following:

Drill collar OD = 8.0 in. \quad Drill collar ID $=2-13 / 16$ in.
Convert $13 / 16$ to decimal equivalent: $\quad 13 \div 16=0.8125$
a) Capacity, $\mathrm{bbl} / \mathrm{ft}=\underline{2.8125^{2}}$

Capacity $\quad=0.007684 \mathrm{bbl} / \mathrm{ft}$
b) Displacement, $\mathrm{bbl} / \mathrm{ft}=\underline{8.0^{2}-2.8125^{2}}$

$$
1029.4
$$

Displacement, bbl/ft $=\underline{56.089844}$ 1029.4

Displacement $\quad=0.0544879 \mathrm{bbl} / \mathrm{ft}$
c) Weight, $\mathrm{lb} / \mathrm{ft}=0.0544879 \mathrm{bbl} / \mathrm{ft} \times 2747 \mathrm{lb} / \mathrm{bbl}$ Weight $=149.678 \mathrm{lb} / \mathrm{ft}$

Rule of thumb formulas

Weight, lb/ft, for REGULAR DRILL COLLARS can be approximated by the following formula:

Weight, $\mathrm{lb} / \mathrm{ft}=\left(\mathrm{OD}, \mathrm{in} .^{2}-\mathrm{ID}, \mathrm{in}^{2}{ }^{2}\right) \times 2.66$
Example: Regular drill collars Drill collar OD $=8.0$ in.
Drill collar ID $=2-13 / 16 \mathrm{in}$.
Decimal equivalent $=2.8125 \mathrm{in}$.
Weight, $\mathrm{lb} / \mathrm{ft}=\left(8.0^{2}-2.8125^{2}\right) \times 2.66$
Weight, $\mathrm{lb} / \mathrm{ft}=56.089844 \times 2.66$
Weight $=149.19898 \mathrm{lb} / \mathrm{ft}$
Weight, lb/ft, for SPIRAL DRILL COLLARS can be approximated by the following formula:
Weight, lb/ft $=\left(\mathrm{OD}, \mathrm{in} .^{2}-\mathrm{ID}\right.$, in. $\left.{ }^{2}\right) \times 2.56$
Example: Spiral drill collars Drill collar OD $=8.0$ in.
Drill collar ID $=2-13 / 16 \mathrm{in}$.
Decimal equivalent $=2.8125 \mathrm{in}$.
Weight, lb/ft $=\left(8.0^{2}-2.8125^{2}\right) \times 2.56$
Weight, $\mathrm{lb} / \mathrm{ft}=56.089844 \times 2.56$
Weight $=143.59 \mathrm{lb} / \mathrm{ft}$

17. Pump Pressure/Pump Stroke Relationship (Also Called the Roughneck's Formula)

Basic formula

New circulating $=$ present circulating X (new pump rate, $\mathrm{spm} \div$ old pump rate, spm$)^{2}$ pressure, psi pressure, psi

Example: Determine the new circulating pressure, psi using the following data:
Present circulating pressure $=1800 \mathrm{psi}$
Old pump rate $\quad=60 \mathrm{spm}$
New pump rate $=30 \mathrm{spm}$
New circulating pressure, $\mathrm{psi}=1800 \mathrm{psi} \times(30 \mathrm{spm} \div 60 \mathrm{spm})^{2}$
New circulating pressure, $\mathrm{psi}=1800 \mathrm{psi} \times 0.25$
New circulating pressure $=450 \mathrm{psi}$

Determination of exact factor in above equation

The above formula is an approximation because the factor " "2" is a rounded-off number. To determine the exact factor, obtain two pressure readings at different pump rates and use the following formula:

```
Factor = log (pressure 1 % pressure 2)
    log (pump rate 1 : pump rate 2)
```

Example: Pressure $1=2500$ psi @ 315 gpm Pressure $2=450 \mathrm{psi} \sim 120 \mathrm{gpm}$

$$
\text { Factor }=\frac{\log (2500 \mathrm{psi} \div 450 \mathrm{psi})}{\log (315 \mathrm{gpm} \div 120 \mathrm{gpm})}
$$

$$
\text { Factor }=\frac{\log (5.5555556)}{\log (2.625)}
$$

Factor $=1.7768$
Example: Same example as above but with correct factor:
New circulating pressure, $\mathrm{psi}=1800 \mathrm{psi} \times(30 \mathrm{spm} \div 60 \mathrm{spm})^{1.7768}$
New circulating pressure, $\mathrm{psi}=1800 \mathrm{psi} \times 0.2918299$
New circulating pressure $=525 \mathrm{psi}$

Cost Per Foot

$\mathrm{C}_{\mathrm{T}}=\frac{\mathrm{B}+\mathrm{C}_{\underline{R}}(\mathrm{t}+\mathrm{T})}{\mathrm{F}}$
Example: Determine the drilling cost (CT), dollars per foot using the following data:
Bit cost $(\mathrm{B}) \quad=\$ 2500 \quad$ Rotating time (I) $=65$ hours
Rig cost $(\mathrm{CR}) \quad=\$ 900 /$ hour \quad Round trip time $(\mathrm{T})=6$ hours (for depth $-10,000 \mathrm{ft}$)
Footage per bit $(\mathrm{F})=1300 \mathrm{ft}$
$\mathrm{C}_{\mathrm{T}}=\frac{2500+900(65+6)}{1300}$
$\mathrm{C}_{\mathrm{T}}=\underline{66,400}$
1300
$\mathrm{C}_{\mathrm{T}}=\$ 51.08$ per foot

19. Temperature Conversion Formulas

Convert temperature, ${ }^{\circ}$ Fahrenheit (F) to ${ }^{\circ}$ Centigrade or Celsius (C)
${ }^{\circ} \mathrm{C}=\left(\frac{\left.{ }^{\circ} \mathrm{F}-32\right) 5}{9} \quad\right.$ OR $\quad{ }^{\circ} \mathrm{C}={ }^{\circ} \mathrm{F}-32 \times 0.5556$
Example: Convert $95^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$:
${ }^{\circ} \mathrm{C}=\frac{(95-32) 5}{9} \quad$ OR $\quad{ }^{\circ} \mathrm{C}=95-32 \times 0.5556$
${ }^{\circ} \mathrm{C}=35$
${ }^{\circ} \mathrm{C}=35$

Convert temperature, ${ }^{\circ}$ Centigrade or Celsius (C) to ${ }^{\circ}$ Fahrenheit
${ }^{\circ} \mathrm{F}=\left({ }^{\circ} \mathrm{C} \times 9\right) \div 5+32 \quad$ OR $\quad{ }^{\circ} \mathrm{F}=24 \times 1.8+32$
Example: Convert $24^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$:
$\begin{array}{lll}{ }^{\circ} \mathrm{F}=(24 \times 9) \div 5+32 & \text { OR } & { }^{\circ} \mathrm{F}=24 \times 1.8+32 \\ { }^{\circ} \mathrm{F}=75.2 & & { }^{\circ} \mathrm{F}=75.2\end{array}$
Convert temperature, ${ }^{\circ}$ Centigrade, Celsius (C) to ${ }^{\circ}$ Kelvin (K)
${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273.16$
Example: Convert $35^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{K}$:
${ }^{\circ} \mathrm{K}=35+273.16$
${ }^{\circ} \mathrm{K}=308.16$

Convert temperature, ${ }^{\circ}$ Fahrenheit (F) to ${ }^{\circ}$ Rankine (R)

${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.69$
Example: Convert $260^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{R}$:
${ }^{\circ} \mathrm{R}=260+459.69$
${ }^{\circ} \mathrm{R}=719.69$

Rule of thumb formulas for temperature conversion

a) Convert ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$:
${ }^{\circ} \mathrm{C}={ }^{\circ} \mathrm{F}-30 \div 2$

Example: Convert $95^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}=95-30 \div 2$
${ }^{\circ} \mathrm{C}=32.5$
b) Convert ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}: \quad \quad{ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C}+{ }^{\circ} \mathrm{C}+30$

Example: Convert $24^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$
${ }^{\circ} \mathrm{F}=24+24+30$
${ }^{\circ} \mathrm{F}=78$

CHAPTER TWO

BASIC CALCULATIONS

Drill string volume, barrels

Barrels $=\underline{I D}$, in. ${ }^{2} \times$ pipe length 1029.4,

Annular volume, barrels

Barrels $=\frac{\text { Dh, in. }{ }^{2}-\mathrm{Dp}, \text { in. }{ }^{2}}{1029.4}$

Strokes to displace: drill string, Kelly to shale shaker and Strokes annulus, and total circulation from Kelly to shale shaker.

Strokes $=$ barrels \div pump output, bbl/stk
Example: Determine volumes and strokes for the following:
Drill pipe $-5.0 \mathrm{in} .-19.5 \mathrm{lb} / \mathrm{f} \quad$ Inside diameter $=4.276 \mathrm{in} . \quad$ Length $=9400 \mathrm{ft}$
Drill collars - 8.0 in . OD Inside diameter $=3.0 \mathrm{in}$.
Length $=600 \mathrm{ft}$
Casing - 13-3/8 in. - $54.5 \mathrm{lb} / \mathrm{f} \quad$ Inside diameter $=12.615 \mathrm{in}$. Setting depth $=4500 \mathrm{ft}$
Pump data -7 in. by 12 in. triplex Efficiency $=95 \% \quad$ Pump output $=0.136 @ 95 \%$
Hole size $=12-1 / 4 \mathrm{in}$.

Drill string volume

$\begin{array}{ll}\text { a) Drill pipe volume, bbl: } & \text { Barrels }=\frac{4.2762}{1029.4} \times 9400 \mathrm{ft} \\ & \begin{array}{l}\text { Barrels }=0.01776 \times 9400 \mathrm{ft} \\ \\ \text { Barrels }\end{array}=166.94 \\ \text { b) Drill collar volume, bbl: } \quad \text { Barrels }=\frac{3.0^{2}}{1029.4} \times 600 \mathrm{ft} \\ & \text { Barrels }=0.0087 \times 600 \mathrm{ft} \\ & \text { Barrels }=5.24 \\ \text { c) Total drill string volume: } & \text { Total drill string vol., } \mathrm{bbl}=166.94 \mathrm{bbl}+5.24 \mathrm{bbl} \\ & \text { Total drill string vol. }=172.18 \mathrm{bbl}\end{array}$

Annular volume

a) Drill collar / open hole: \quad Barrels $=\frac{12.25^{2}-8.0^{2}}{1029.4} \times 600 \mathrm{ft}$

Barrels $=0.0836 \times 600 \mathrm{ft}$
Barrels $=50.16$
b) Drill pipe / open hole:

$$
\text { Barrels }=\frac{12.25^{2}-5.0^{2}}{1029.4} \times 4900 \mathrm{ft}
$$

Barrels $=0.12149 \times 4900 \mathrm{ft}$
Barrels $=595.3$
c) Drill pipe / cased hole: \quad Barrels $=\frac{12.615^{2}-5.0^{2}}{1029.4} \times 4500 \mathrm{ft}$

Barrels $=0.130307 \times 4500 \mathrm{ft}$
Barrels $=586.38$
d) Total annular volume: \quad Total annular vol. $=50.16+595.3+586.38$

Total annular vol. $=1231.84$ barrels

Strokes

a) Surface to bit strokes: \quad Strokes $=$ drill string volume, $\mathrm{bbl} \div$ pump output, $\mathrm{bbl} / \mathrm{stk}$

Surface to bit strokes $=172.16 \mathrm{bbl} \div 0.136 \mathrm{bbl} / \mathrm{stk}$
Surface to bit strokes $=1266$
b) Bit to surface (or bottoms-up strokes):

Strokes $=$ annular volume, $\mathrm{bbl} \div$ pump output, $\mathrm{bbl} / \mathrm{stk}$
Bit to surface strokes $=1231.84 \mathrm{bbl} \div 0.136 \mathrm{bbl} /$ stk
Bit to surface strokes $=9058$
c) Total strokes required to pump from the Kelly to the shale shaker:

Strokes $=$ drill string vol., bbl + annular vol., bbl \div pump output, bbl/stk
Total strokes $=(172.16+1231.84) \div 0.136$
Total strokes $=1404 \div 0.136$
Total strokes $=10,324$

2.

 Slug Calculations
Barrels of slug required for a desired length of dry pipe

Step 1 Hydrostatic pressure required to give desired drop inside drill pipe:
HP, psi $=$ mud wt, ppg x $0.052 \times \mathrm{ft}$ of dry pipe
Step 2 Difference in pressure gradient between slug weight and mud weight:
$\mathrm{psi} / \mathrm{ft}=(\mathrm{slug} \mathrm{wt}, \mathrm{ppg}-\mathrm{mud} \mathrm{wt}, \mathrm{ppg}) \times 0.052$
Step 3 Length of slug in drill pipe:
Slug length, $\mathrm{ft}=$ pressure, $\mathrm{psi} \div$ difference in pressure gradient, $\mathrm{psi} / \mathrm{ft}$

Step 4 Volume of slug, barrels:
Slug vol., bbl = slug length, $\mathrm{ft} \times$ drill pipe capacity, $\mathrm{bbl} / \mathrm{ft}$

Example: Determine the barrels of slug required for the following:
Desired length of dry pipe (2 stands) $=184 \mathrm{ft} \quad$ Mud weight $=12.2 \mathrm{ppg}$
Drill pipe capacity $4-1 / 2 \mathrm{in}$. $-16.6 \mathrm{lb} / \mathrm{ft}=0.01422 \mathrm{bbl} / \mathrm{ft}$
Step 1 Hydrostatic pressure required:
$\mathrm{HP}, \mathrm{psi}=12.2 \mathrm{ppg} \times 0.052 \times 184 \mathrm{ft}$
$\mathrm{HP}=117 \mathrm{psi}$
Step 2 Difference in pressure gradient, psi/ft:
$\mathrm{psi} / \mathrm{ft}=(13.2 \mathrm{ppg}-12.2 \mathrm{ppg}) \times 0.052$
$\mathrm{psi} / \mathrm{ft}=0.052$
Step 3 Length of slug in drill pipe, ft:
Slug length, $\mathrm{ft}=117 \mathrm{psi} \div 0.052$
Slug length $=2250 \mathrm{ft}$
Step 4 Volume of slug, bbl:
Slug vol., bbl $=2250 \mathrm{ft} \times 0.01422 \mathrm{bbl} / \mathrm{ft}$
Slug vol. $\quad=32.0 \mathrm{bbl}$

Weight of slug required for a desired length of dry pipe with a set volume of slug

Step 1 Length of slug in drill pipe, ft:
Slug length, $\mathrm{ft}=$ slug vol., $\mathrm{bbl} \div$ drill pipe capacity, bbl/ft
Step 2 Hydrostatic pressure required to give desired drop inside drill pipe:
HP, psi $=$ mud wt, ppg x $0.052 \times \mathrm{ft}$ of dry pipe
Step 3 Weight of slug, ppg:
Slug wt, ppg $=\mathrm{HP}, \mathrm{psi} \div 0.052 \div$ slug length, $\mathrm{ft}+$ mud wt, ppg
Example: Determine the weight of slug required for the following:
Desired length of dry pipe (2 stands) $=184 \mathrm{ft}$
Mud weight $=12.2 \mathrm{ppg}$
Drill pipe capacity $4-1 / 2 \mathrm{in}$. $-16.6 \mathrm{lb} / \mathrm{ft}=0.01422 \mathrm{bbl} / \mathrm{ft}$
Volume of slug $=25 \mathrm{bbl}$

Step 1 Length of slug in drill pipe, $\mathrm{ft}: \quad$ Slug length, $\mathrm{ft}=25 \mathrm{bbl} \pm 0.01422 \mathrm{bbl} / \mathrm{ft}$
Slug length $=1758 \mathrm{ft}$
Step 2 Hydrostatic pressure required: HP, Psi $=12.2 \mathrm{ppg} \times 0.052 \times 184 \mathrm{ft}$ $\mathrm{HP}, \mathrm{Psi}=117 \mathrm{psi}$

Step 3 Weight of slug, ppg:
Slug wt, $\mathrm{ppg}=117 \mathrm{psi} \div 0.052 \div 1758 \mathrm{ft}+12.2 \mathrm{ppg}$
Slug wt, $\mathrm{ppg}=1.3 \mathrm{ppg}+12.2 \mathrm{ppg}$
Slug wt $=13.5 \mathrm{ppg}$

Volume, height, and pressure gained because of slug:

a) Volume gained in mud pits after slug is pumped, due to U-tubing:

Vol., $\mathrm{bbl}=\mathrm{ft}$ of dry pipe x drill pipe capacity, bbl/ft
b) Height, ft, that the slug would occupy in annulus:

Height, $\mathrm{ft}=$ annulus vol., ft/bbl x slug vol., bbl
c) Hydrostatic pressure gained in annulus because of slug:
$\mathrm{HP}, \mathrm{psi}=$ height of slug in annulus, ft X difference in gradient, $\mathrm{psi} / \mathrm{ft}$ between
slug wt and mud wt
Example: Feet of dry pipe (2 stands) $=184 \mathrm{ft} \quad$ Slug volume $=32.4 \mathrm{bbl}$
Slug weight $\quad=13.2 \mathrm{ppg}$ Mud weight $=12.2 \mathrm{ppg}$
Drill pipe capacity $4-1 / 2 \mathrm{in}$. $16.6 \mathrm{lb} / \mathrm{ft}=0.01422 \mathrm{bbl} / \mathrm{ft}$
Annulus volume ($8-1 / 2 \mathrm{in}$. by $4-1 / 2 \mathrm{in}$.) $=19.8 \mathrm{ft} / \mathrm{bbl}$
a) Volume gained in mud pits after slug is pumped due to U-tubing:

Vol., $\mathrm{bbl}=184 \mathrm{ft} \times 0.01422 \mathrm{bbl} / \mathrm{ft}$
Vol. $=2.62 \mathrm{bbl}$
b) Height, ft , that the slug would occupy in the annulus:

Height, $\mathrm{ft}=19.8 \mathrm{ft} / \mathrm{bbl} \times 32.4 \mathrm{bbl}$
Height $=641.5 \mathrm{ft}$
c) Hydrostatic pressure gained in annulus because of slug:
$\mathrm{HP}, \mathrm{psi}=641.5 \mathrm{ft}(13.2-12.2) \times 0.052$
$\mathrm{HP}, \mathrm{psi}=641.5 \mathrm{ft} \times 0.052$
$\mathrm{HP}=33.4 \mathrm{psi}$

3. Accumulator Capacity - Usable Volume Per Bottle

Usable Volume Per Bottle

NOTE: The following will be used as guidelines: Volume per bottle $=10 \mathrm{gal}$
Pre-charge pressure $=1000 \mathrm{psi}$
Maximum pressure $=3000 \mathrm{psi}$
Minimum pressure remaining after activation $=1200 \mathrm{psi}$
Pressure gradient of hydraulic fluid $=0.445 \mathrm{psi} / \mathrm{ft}$
Boyle's Law for ideal gases will be adjusted and used as follows:
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$

Surface Application

Step 1 Determine hydraulic fluid necessary to increase pressure from pre-charge to minimum:
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$1000 \mathrm{psi} \times 10 \mathrm{gal}=1200 \mathrm{psi} \times \mathrm{V}_{2}$
$10,000=\mathrm{V} 2$
1200
$\mathrm{V}_{\mathbf{2}}=8.33$ The nitrogen has been compressed from 10.0 gal to 8.33 gal .
$10.0-8.33=1.67 \mathrm{gal}$ of hydraulic fluid per bottle .
NOTE: This is dead hydraulic fluid. The pressure must not drop below this minimum value.
Step 2 Determine hydraulic fluid necessary to increase pressure from pre-charge to maximum:
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
1000 psi $\times 10$ gals $=3000$ psi $\times \mathrm{V}_{2}$
$10,000=V_{2}$
3000
$\mathrm{V}_{2}=3.33$ The nitrogen has been compressed from 10 gal to 3.33 gal .
$10.0-3.33=6.67 \mathrm{gal}$ of hydraulic fluid per bottle .
Step 3 Determine usable volume per bottle:
Useable vol./bottle $=$ Total hydraulic fluid/bottle — Dead hydraulic fluid/bottle
Useable vol./bottle $=6.67-1.67$
Useable vol./bottle $=5.0$ gallons

Subsea Applications

In subsea applications the hydrostatic pressure exerted by the hydraulic fluid must be compensated for in the calculations:

Example: Same guidelines as in surface applications:
Water depth $=1000 \mathrm{ft} \quad$ Hydrostatic pressure of hydraulic fluid $=445 \mathrm{psi}$
Step 1 Adjust all pressures for the hydrostatic pressure of the hydraulic fluid:
Pre-charge pressure $=1000 \mathrm{psi}+445 \mathrm{psi}=1445 \mathrm{psi}$
Minimum pressure $=1200 \mathrm{psi}+445 \mathrm{psi}=1645 \mathrm{psi}$
Maximum pressure $=3000 \mathrm{psi}+445 \mathrm{psi}=3445 \mathrm{psi}$
Step 2 Determine hydraulic fluid necessary to increase pressure from pre-charge to minimum:
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}=1445 \mathrm{psi} \times 10=1645 \times \mathrm{V}_{2}$
$\underline{14,450}=\mathrm{V}_{2}$
1645
$\mathrm{V}_{2}=8.78 \mathrm{gal}$
$10.0-8.78=1.22 \mathrm{gal}$ of dead hydraulic fluid

Step 3 Determine hydraulic fluid necessary to increase pressure from pre-charge to maximum:

1445 psi x $10=3445$ psi x V_{2}
$14450=V_{2}$
3445
$\mathrm{V}_{2}=4.19 \mathrm{gal}$
$10.0-4.19=5.81 \mathrm{gal}$ of hydraulic fluid per bottle .
Step 4 Determine useable fluid volume per bottle:
Useable vol./bottle $=$ Total hydraulic fluid/bottle — Dead hydraulic fluid/bottle
Useable vol./bottle $=5.81-1.22$
Useable vol./bottle $=4.59$ gallons

Accumulator Pre-charge Pressure

The following is a method of measuring the average accumulator pre-charge pressure by operating the unit with the charge pumps switched off:
$\mathrm{P}, \mathrm{psi}=$ vol. removed, $\mathrm{bbl} \div$ total acc. vol., bbl $\times((\mathrm{Pf} \times \mathrm{Ps}) \div(\mathrm{Ps}-\mathrm{Pf}))$
where $\mathrm{P}=$ average pre-charge pressure, $\mathrm{psi} \quad \mathrm{Pf}=$ final accumulator pressure, psi
$\mathrm{Ps}=$ starting accumulator pressure, psi
Example: Determine the average accumulator pre-charge pressure using the following data:
Starting accumulator pressure $(\mathrm{Ps})=3000 \mathrm{psi} \quad$ Final accumulator pressure $(\mathrm{Pf})=2200 \mathrm{psi}$
Volume of fluid removed $\quad=20 \mathrm{gal}$ Total accumulator volume $=180 \mathrm{gal}$
P, psi $=20 \div 180 \times((2200 \times 3000) \div(3000-2200))$
$\mathrm{P}, \mathrm{psi}=0.1111 \times(6,600,000 \div 800)$
$\mathrm{P}, \mathrm{psi}=0.1111 \times 8250$
$\mathrm{P} \quad=917 \mathrm{psi}$

4. Bulk Density of Cuttings (Using Mud Balance)

Procedure:

1. Cuttings must be washed free of mud. In an oil mud, diesel oil can be used instead of water.
2. Set mud balance at 8.33 ppg .
3. Fill the mud balance with cuttings until a balance is obtained with the lid in place.
4. Remove lid, fill cup with water (cuttings included), replace lid, and dry outside of mud balance.
5. Move counterweight to obtain new balance.

The specific gravity of the cuttings is calculated as follows:
$\mathrm{SG}=\frac{1}{2(\mathrm{O} .12 \times \mathrm{Rw})}$.
where $\quad \mathrm{SG}=$ specific gravity of' cuttings - bulk density
$\mathrm{Rw}=$ resulting weight with cuttings plus water, ppg
Example: Rw $=13.8 \mathrm{ppg}$. Determine the bulk density of cuttings:
$\mathrm{SG}=$ \qquad
$2-(0.12 \times 13.8)$
$\mathrm{SG}=\frac{1}{0.344}$.
$\mathrm{SG}=2.91$

5. Drill String Design (Limitations)

The following will be determined:
Length of bottom hole assembly (BHA) necessary for a desired weight on bit (WOB).
Feet of drill pipe that can be used with a specific bottom hole assembly (BHA).

1. Length of bottom hole assembly necessary for a desired weight on bit:

Length, $\mathrm{ft}=\frac{\text { WOB } \times f}{\text { Wdc } \times \mathrm{BF}}$
where $\quad \mathrm{WOB}=$ desired weight to be used while drilling
$\mathrm{f}=$ safety factor to place neutral point in drill collars
$\mathrm{Wdc}=$ drill collar weight, $\mathrm{lb} / \mathrm{ft}$
$\mathrm{BF}=$ buoyancy factor
Example: Desired WOB while drilling $=50,000 \mathrm{lb} \quad$ Safety factor $=15 \%$
Drill collar weight 8 in. OD-3 in. ID $=147 \mathrm{lb} / \mathrm{ft} \quad$ Mud weight $=12.0 \mathrm{ppg}$
Solution: a) Buoyancy factor (BF):
$\mathrm{BF}=\underline{65.5-12.0 \mathrm{ppg}}$
65.5
$\mathrm{BF}=0.8168$
b) Length of bottom hole assembly (BHA) necessary:

Length, $\mathrm{ft}=\frac{50000 \times 1.15}{147 \times 0.8168}$
Length, $\mathrm{ft}=\underline{57,500}$
120.0696

Length $=479 \mathrm{ft}$

2. Feet of drill pipe that can be used with a specific BHA

NOTE: Obtain tensile strength for new pipe from cementing handbook or other source.
a) Determine buoyancy factor:
$\mathrm{BF}=\frac{65.5-\text { mud weight }, \mathrm{ppg}}{65.5}$
b) Determine maximum length of drill pipe that can be run into the hole with a specific BHA.:

Length $_{\text {max }}=\frac{[(\mathrm{T} \times \mathrm{f})-\mathrm{MOP}-\text { Wbha }] \times \mathrm{BF}}{\mathrm{Wdp}}$
where $\mathrm{T}=$ tensile strength, lb for new pipe
f $\quad=$ safety factor to correct new pipe to no. 2 pipe
MOP = margin of overpull
$\mathrm{Wbha}=\mathrm{BHA}$ weight in air, $\mathrm{lb} / \mathrm{ft}$
$\mathrm{Wdp}=$ drill pipe weight in air, lb/ft. including tool joint $\mathrm{BF}=$ buoyancy factor
c) Determine total depth that can be reached with a specific bottom-hole assembly:

Total depth, $\mathrm{ft}=$ length $_{\text {max }}+$ BHA length

Example: Drill pipe $(5.0 \mathrm{in})=.21.87 \mathrm{lb} / \mathrm{ft}-$ Grade G Tensile strength $=554,000 \mathrm{lb}$
BHA weight in air $=50,000 \mathrm{lb} \quad$ BHA length $=500 \mathrm{ft}$
Desired overpull $=100,000 \mathrm{lb} \quad$ Mud weight $=13.5 \mathrm{ppg}$
Safety factor $=10 \%$
a) Buoyancy factor:
$\mathrm{BF}=\frac{65.5-13.5}{65.5}$
$\mathrm{BF}=0.7939$
b) Maximum length of drill pipe that can be run into the hole:

Length $_{\text {max }}=\frac{[(554,000 \times 0.90)-100,000-50,000] \times 0.7939}{21.87}$
Length $_{\text {max }}=\underline{276.754}$

$$
2187
$$

Length $_{\text {max }}=12,655 \mathrm{ft}$
c) Total depth that can be reached with this BHA and this drill pipe:

Total depth, $\mathrm{ft}=12,655 \mathrm{ft}+500 \mathrm{ft}$
Total depth $=13,155 \mathrm{ft}$

6. Ton-Mile (TM) Calculations

All types of ton-mile service should be calculated and recorded in order to obtain a true picture of the total service received from the rotary drilling line. These include:

1. Round trip ton-miles
2. Coring ton-miles
3. Short-trip ton-miles
4. Drilling or "connection" ton-miles
5. Ton-miles setting casing

Round trip ton-miles ($\mathbf{R T}_{\mathbf{T M}}$)

$$
\mathrm{RT}_{\mathrm{TM}}=\frac{\mathrm{Wp} \times \mathrm{D} \times(\mathrm{Lp}+\mathrm{D}) \div(2 \times \mathrm{D})(2 \times \mathrm{Wb}+\mathrm{Wc})}{5280 \times 2000}
$$

where $\quad \mathrm{RT}_{\mathrm{TM}}=$ round trip ton-miles
$\mathrm{Wp}=$ buoyed weight of drill pipe, $\mathrm{lb} / \mathrm{ft}$
$\mathrm{D}=$ depth of hole, ft
$\mathrm{Lp}=$ length of one stand of drill pipe, (aye), ft
$\mathrm{Wb}=$ weight of travelling block assembly, lb
$\mathrm{Wc}=$ buoyed weight of drill collars in mud minus the buoyed weight of the same length of drill pipe, lb
$2000=$ number of pounds in one ton
$5280=$ number of feet in one mile
Example: Round trip ton-miles
Mud weight $\quad=9.6 \mathrm{ppg} \quad$ Average length of one stand $=60 \mathrm{ft}$ (double)
Drill pipe weight $=13.3 \mathrm{lb} / \mathrm{ft}$ Measured depth $\quad=4000 \mathrm{ft}$
Drill collar length $=300 \mathrm{ft}$ Travelling block assembly $=15,000 \mathrm{lb}$
Drill collar weight $=83 \mathrm{lb} / \mathrm{ft}$
Solution: a) Buoyancy factor:
$\mathrm{BF}=65.5-9.6$ ppg. $\div 65.5$
$\mathrm{BF}=0.8534$
b) Buoyed weight of drill pipe in mud, $\mathrm{lb} / \mathrm{ft}(\mathrm{Wp})$:

$$
\begin{aligned}
& \mathrm{Wp}=13.3 \mathrm{lb} / \mathrm{ft} \mathrm{x} 0.8534 \\
& \mathrm{Wp}=11.35 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

c) Buoyed weight of drill collars in mud minus the buoyed weight of the same length of drill pipe, lb (Wc):

```
\(\mathrm{Wc}=(300 \times 83 \times 0.8534)-(300 \times 13.3 \times 0.8534)\)
\(\mathrm{Wc}=21,250-3,405\)
\(\mathrm{Wc}=17,845 \mathrm{lb}\)
```

Round trip ton-miles $=\underline{11.35 \times 4000 \times(60+4000)+(2 \times 4000) \times(2 \times 15000+17845)}$
5280×2000
$\mathrm{RT}_{\mathrm{TM}}=\underline{11.35 \times 4000 \times 4060+8000 \times(30,000+17,845)}$
5280×2000
$\mathrm{RT}_{\mathrm{TM}}=\underline{11.35 \times 4000 \times 4060+8000 \times 47,845}$
10,560,000
$\mathrm{RT}_{\mathrm{TM}}=\frac{1.843208+3.827608}{10,560,000}$
$\mathrm{RT}_{\mathrm{TM}}=53.7$

Drilling or "connection" ton-miles

The ton-miles of work performed in drilling operations is expressed in terms of work performed in making round trips. These are the actual ton-miles of work in drilling down the length of a section of drill pipe (usually approximately 30 ft) plus picking up, connecting, and starting to drill with the next section.

To determine connection or drilling ton-miles, take 3 times (ton-miles for current round trip minus ton-miles for previous round trip):
$\mathrm{Td}=3\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$
where $\mathrm{Td}=$ drilling or "connection" ton-miles
$\mathrm{T}_{2}=$ ton-miles for one round trip - depth where drilling stopped before coming out of hole.
$\mathrm{T}_{1}=$ ton-miles for one round trip — depth where drilling started.
Example: Ton-miles for trip @ $4600 \mathrm{ft}=64.6$ Ton-miles for trip @ $4000 \mathrm{ft}=53.7$
$\mathrm{Td}=3 \times(64.6-53.7)$
$\mathrm{Td}=3 \times 10.9$
$\mathrm{Td}=32.7$ ton-miles

Ton-miles during coring operations

The ton-miles of work performed in coring operations, as for drilling operations, is expressed in terms of work performed in making round trips.

To determine ton-miles while coring, take 2 times ton-miles for one round trip at the depth where coring stopped minus ton-miles for one round trip at the depth where coring began:
$\mathrm{Tc}=2\left(\mathrm{~T}_{4}-\mathrm{T}_{\mathbf{3}}\right)$
where $\mathrm{Tc}=$ ton-miles while coring
$\mathrm{T}_{4}=$ ton-miles for one round trip - depth where coring stopped before coming out of hole
$\mathrm{T}_{3}=$ ton-miles for one round trip - depth where coring started after going in hole

Ton-miles setting casing

The calculations of the ton-miles for the operation of setting casing should be determined as for drill pipe, but with the buoyed weight of the casing being used, and with the result being multiplied by one-half, because setting casing is a one-way ($1 / 2$ round trip) operation. Tonmiles for setting casing can be determined from the following formula:

$$
\mathrm{Tc}=\frac{\mathrm{Wp} \times \mathrm{D} \times(\mathrm{Lcs}+\mathrm{D})+\mathrm{D} \times \mathrm{Wb} \times 0.5}{5280 \times 2000}
$$

where $\mathrm{Tc}=$ ton-miles setting casing $\quad \mathrm{Wp}=$ buoyed weight of casing, $\mathrm{lb} / \mathrm{ft}$
Lcs = length of one joint of casing, ft
$\mathrm{Wb}=$ weight of travelling block assembly, lb

Ton-miles while making short trip

The ton-miles of work performed in short trip operations, as for drilling and coring operations, is also expressed in terms of round trips. Analysis shows that the ton-miles of work done in making a short trip is equal to the difference in round trip ton-miles for the two depths in question.
$\mathrm{Tst}=\mathrm{T}_{6}-\mathrm{T}_{5}$
where Tst $=$ ton-miles for short trip
$\mathrm{T}_{6}=$ ton-miles for one round trip at the deeper depth, the depth of the bit before starting the short trip.
$\mathrm{T}_{5}=$ ton-miles for one round trip at the shallower depth, the depth that the bit is pulled up to.

7. Cementing Calculations

Cement additive calculations

a) Weight of additive per sack of cement:

Weight, $\mathrm{lb}=$ percent of additive $\mathrm{x} 94 \mathrm{lb} / \mathrm{sk}$
b) Total water requirement, gal/sk, of cement:

Water, gal/sk $=$ Cement water requirement, gal/sk + Additive water requirement, gal/sk
c) Volume of slurry, gal/sk:

d) Slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$:

Yield, $\mathrm{ft}^{3} / \mathrm{sk}=$ vol. of slurry, gal/sk

$$
7.48 \mathrm{gal} / \mathrm{ft}^{3}
$$

e) Slurry density, lb/gal:

Density, $\mathrm{lb} / \mathrm{gal}=\underline{94+\mathrm{wt} \text { of additive }+(8.33 \mathrm{x} \text { vol. of water/sk })}$ vol. of slurry, gal/sk

Example: Class A cement plus 4% bentonite using normal mixing water:
Determine the following: Amount of bentonite to add Total water requirements Slurry yield

1) Weight of additive:

Weight, lb/sk $=0.04 \times 94 \mathrm{lb} / \mathrm{sk}$
Weight $\quad=3.76 \mathrm{lb} / \mathrm{sk}$
2) Total water requirement:

Water $=5.1$ (cement) +2.6 (bentonite)
Water $=7.7 \mathrm{gal} / \mathrm{sk}$ of cement
3) Volume of slurry:
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=\frac{94}{3.14 \times 8.33}+\frac{3.76}{2.65 \times 8.33}+7.7$
Vol. gallsk $=3.5938+0.1703+7.7$
Vol. $\quad=11.46 \mathrm{gal} / \mathrm{sk}$
4) Slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$:

Yield, $\mathrm{ft}^{3} / \mathrm{sk}=11.46 \mathrm{gal} / \mathrm{sk} \div 7.48 \mathrm{gal} / \mathrm{ft}^{3}$
Yield $\quad=1.53 \mathrm{ft}^{3} / \mathrm{sk}$
5) Slurry density, lb/gal:

Density, $\mathrm{lb} / \mathrm{gal}=\frac{94+3.76+(8.33 \times 7.7)}{11.46}$
Density, $\mathrm{lb} / \mathrm{gal}=\frac{61.90}{11.46}$
Density $\quad=14.13 \mathrm{lb} /$ gal

Water requirements

a) Weight of materials, $\mathrm{lb} / \mathrm{sk}$:

Weight, $\mathrm{lb} / \mathrm{sk}=94+(8.33 \mathrm{x}$ vol of water, gal $)+(\%$ of additive x 94$)$
b) Volume of slurry, gal/sk:
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=\frac{94 \mathrm{lb} / \mathrm{sk}}{\mathrm{SG} \times 8.33}+\frac{\mathrm{wt} \text { of additive, } \mathrm{lb} / \mathrm{sk}}{\text { SG x } 8.33}+$ water vol, gal
c) Water requirement using material balance equation:
$\mathrm{D}_{1} \mathrm{~V}_{1}=\mathrm{D}_{2} \mathrm{~V}_{2}$
Example: Class H cement plus 6% bentonite to be mixed at $14.0 \mathrm{lb} / \mathrm{gal}$. Specific gravity of bentonite $=2.65$.

Determine the following: Bentonite requirement, $\mathrm{lb} / \mathrm{sk}$ Water requirement, gallsk Slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$

Check slurry weight, lb/gal

1) Weight of materials, $\mathrm{lb} / \mathrm{sk}$:

Weight, $\mathrm{lb} / \mathrm{sk}=94+(0.06 \mathrm{x} \mathrm{94})+(8.33 \mathrm{x}$ " y " $)$
Weight, lb/sk $=94+5.64+8.33$ " y "
Weight $\quad=99.64+8.33$ " y "
2) Volume of slurry, gal/sk:
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=\frac{94}{3.14 \times 8.33}+\frac{5.64}{3.14 \times 8.33}+" \mathrm{y}$ "
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=3.6+0.26+" \mathrm{y}$ "
$\mathrm{Vol}, \mathrm{gal} / \mathrm{sk}=3.86$
3) Water requirements using material balance equation

$$
\begin{aligned}
99.64+8.33 " y " & =(3.86+" \mathrm{y"}) \times 14.0 \\
99.64+8.33 " \mathrm{y"} & =54.04+14.0 " \mathrm{y"} \\
99.64-54.04 & =14.0 " \mathrm{y"}-8.33 " \mathrm{y} " \\
45.6 & =5.67 " \mathrm{y"} \\
45.6+5.67 & =\text { "y" } \\
8.0 & =" \mathrm{y"} \text { Thus, water required }=8.0 \mathrm{gal} / \mathrm{sk} \text { of cement }
\end{aligned}
$$

4) Slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$:

Yield, $\mathrm{ft} 3 / \mathrm{sk}=\frac{3.6+0.26+8.0}{7.48}$
Yield, $\mathrm{ft}^{3} / \mathrm{sk}=\frac{11.86}{7.48}$
Yield $\quad=1.59 \mathrm{ft}^{3} / \mathrm{sk}$
5) Check slurry density, lb/gal:

Density, $\mathrm{lb} / \mathrm{gal}=\underline{94+5.64+(8.33 \times 8.0)}$
11.86

Density, lb/gal $=\underline{166.28}$
11.86

Density $\quad=14.0 \mathrm{lb} / \mathrm{gal}$

Field cement additive calculations

When bentonite is to be pre-hydrated, the amount of bentonite added is calculated based on the total amount of mixing water used.

Cement program: 240 sk cement; slurry density $=13.8 \mathrm{ppg} ; 8.6 \mathrm{gal} / \mathrm{sk}$ mixing water; 1.5% bentonite to be pre-hydrated:
a) Volume of mixing water, gal:

Volume $=240$ sk x $8.6 \mathrm{gal} / \mathrm{sk}$
Volume $=2064$ gal
b) Total weight, lb, of mixing water:

Weight $=2064 \mathrm{gal} \times 8.33 \mathrm{lb} / \mathrm{gal}$
Weight $=17,193 \mathrm{lb}$
c) Bentonite requirement, Lb :

Bentonite $=17,193 \mathrm{lb} \times 0.015 \%$
Bentonite $=257.89 \mathrm{lb}$

Other additives are calculated based on the weight of the cement:
Cement program: 240 sk cement; 0.5\% Halad; 0.40\% CFR-2:
a) Weight of cement:

Weight $=240 \mathrm{skx} 94 \mathrm{lb} / \mathrm{sk}$
Weight $=22,560 \mathrm{lb}$
b) Halad $=0.5 \%$

Halad $=22,560 \mathrm{lb} \times 0.005$
Halad $=112.8 \mathrm{lb}$
c) $\mathrm{CFR}-2=0.40 \%$

CFR-2 $=22,560 \mathrm{lb} \times 0.004$
CFR-2 $=90.24 \mathrm{lb}$

Table 2-1
Water Requirements and Specific Gravity of Common Cement Additives

	Water Requirement ga1/94 Ib/sk	Specific Gravity
API Class Cement		
Class A \& B	5.2	3.14
Class C	6.3	3.14
Class D \& E	4.3	3.14
Class G	5.0	3.14
Class H	$4.3-5.2$	3.14
Chem Comp Cement	6.3	3.14
Attapulgite	$1.3 / 2 \%$ in cement	2.89
Cement Fondu	4.5	3.23

Table 2-1 (continued)

Water Requirements and Specific Gravity of Common Cement Additives

	Water Requirement ga1/94 lb/sk	Specific Gravity
Lumnite Cement	4.5	3.20
Trinity Lite-weight Cement	9.7	2.80
Bentonite	1.3/2\% in cement	2.65
Calcium Carbonate Powder	0	1.96
Calcium Chloride	0	1.96
Cal-Seal (Gypsum Cement)	4.5	2.70
CFR-1	0	1.63
CFR-2	0	1.30
D-Air-1	0	1.35
D-Air-2	0	1.005
Diacel A	0	2.62
Diacel D	3.3-7.4/10\% in cement	2.10
Diacel LWL	0 (up to 0.7\%) 0.8:1/1\% in cement	1.36
Gilsonite	$2 / 50-\mathrm{lb} / \mathrm{ft}^{3}$	1.07
Halad-9	0 (up to 5%) 0.4-0.5 over 5%	1.22
Halad 14	0	1.31
HR-4	0	1.56
HR-5	0	1.41
HR-7	0	1.30
HR-12	0	1.22
HR-15	0	1.57
Hydrated Lime	14.4	2.20
Hydromite	2.82	2.15
Iron Carbonate	0	3.70
LA-2 Latex	0.8	1.10
NF-D	0	1.30
Perlite regular	$4 / 8 \mathrm{lb} / \mathrm{fft}^{3}$	2.20
Perlite 6	$6 / 38 \mathrm{lb} / \mathrm{ft}^{3}$	-
Pozmix A	$4.6-5$	2.46
Salt (NaCI)	0	2.17
Sand Ottawa	0	2.63
Silica flour	1.6/35\% in cement	2.63
Coarse silica	0	2.63
Spacer sperse	0	1.32
Spacer mix (liquid)	0	0.932
Tuf Additive No. 1	0	1.23
Tuf Additive No. 2	0	0.88
Tuf Plug	0	1.28

8. Weighted Cement Calculations

Amount of high density additive required per sack of cement to achieve a required cement slurry density

```
x = (Wt x 11.207983\divSGc)+(wt x CW) - 94-(8.33 x CW)
    (1+(AW \div100))-(wt % (SGa x 8.33)) - (wt + (AW \div100))
```

where $\quad \mathrm{x}=$ additive required, pounds per sack of cement
$\mathrm{Wt}=$ required slurry density, lb/gal
$\mathrm{SGc}=$ specific gravity of cement
$\mathrm{CW}=$ water requirement of cement
AW = water requirement of additive
$\mathrm{SGa}=$ specific gravity of additive

Additive	Water Requirement ga1/94 lb/sk	Specific Gravity
Hematite	0.34	5.02
Ilmenite	0	4.67
Barite	2.5	4.23
Sand	0	2.63
API Cements		
Class A \& B	5.2	3.14
Class C	6.3	3.14
Class D,E,F,H	4.3	3.14
Class G	5.2	3.14

Example: Determine how much hematite, $\mathrm{lb} / \mathrm{sk}$ of cement, would be required to increase the density of Class H cement to $17.5 \mathrm{lb} / \mathrm{gal}$:
Water requirement of cement $=4.3 \mathrm{gal} / \mathrm{sk}$
Water requirement of additive (hematite) $=0.34 \mathrm{gal} / \mathrm{sk}$
Specific gravity of cement $=3.14$
Specific gravity of additive (hematite) $=5.02$
Solution: $\quad \mathrm{x}=\frac{(17.5 \times 11.207983 \div 3.14)+(17.5 \times 4.3)-94-(8.33 \times 4.3)}{(1+(0.34 \div 100))-(17.5 \div(5.02 \times 8.33)) \times(17.5 \times(0.34 \div 100))}$
$x=\underline{62.4649+75.25-94-35.819}$
$1.0034-0.418494-0.0595$
$\mathrm{x}=\underline{7.8959}$
0.525406
$\mathrm{x}=15.1 \mathrm{lb}$ of hematite per sk of cement used

9. Calculations for the Number of Sacks of Cement Required

If the number of feet to be cemented is known, use the following:
Step 1 : Determine the following capacities:
a) Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\mathrm{Dh}$, in. ${ }^{2}-\mathrm{Dp}$, in. ${ }^{2}$ 183.35
b) Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{ID}, \mathrm{in}^{2}{ }^{2}}{183.35}$
c) Casing capacity, bbl/ft:

Casing capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{ID}, \mathrm{in}^{2}{ }^{2}}{1029.4}$

Step 2 : Determine the number of sacks of LEAD or FILLER cement required:
Sacks required $=$ feet to be x Annular capacity, x excess $:$ yield, $\mathrm{ft}^{3} / \mathrm{sk}$ LEAD cement cemented $\quad \mathrm{ft}^{3} / \mathrm{ft}$

Step 3 : Determine the number of sacks of TAIL or NEAT cement required

Sacks required annulus $=$ feet to be x annular capacity, $\mathrm{ft}^{3} / \mathrm{ft} \mathrm{x}$ excess \div yield, $\mathrm{ft}^{3} / \mathrm{sk}$ cemented

TAIL cement
$\begin{aligned} \text { Sacks required casing }= & \begin{array}{l}\text { no. of feet } \\ \text { between float }\end{array} \quad \mathrm{x} \text { annular capacity, } \mathrm{x} \text { excess } \div \mathrm{ft}^{3} / \mathrm{ft}\end{aligned} \underset{\mathrm{yield}, \mathrm{ft}^{3} / \mathrm{sk}}{\mathrm{TAIL} \text { cement }}$ collar \& shoe

Total Sacks of TAIL cement required:
Sacks $=$ sacks required in annulus + sacks required in casing
Step 4 Determine the casing capacity down to the float collar:
Casing capacity, $\mathrm{bbl}=$ casing capacity, $\mathrm{bbl} / \mathrm{ft} \mathrm{x}$ feet of casing to the float collar
Step 5 Determine the number of strokes required to bump the plug:
Strokes $=$ casing capacity, $\mathrm{bbl} \div$ pump output, $\mathrm{bbl} / \mathrm{stk}$

Example: From the data listed below determine the following:

1. How many sacks of LEAD cement will be required?
2. How many sacks of TAIL cement will be required?
3. How many barrels of mud will be required to bump the plug?
4. How many strokes will be required to bump the top plug?

Data: Casing setting depth $=3000 \mathrm{ft} \quad$ Hole size $=17-1 / 2 \mathrm{in}$.
Casing $54.5 \mathrm{lb} / \mathrm{ft}=13-3 / 8 \mathrm{in}$. Casing ID $=12.615 \mathrm{in}$.
Float collar (feet above shoe) $=44 \mathrm{ft}$
Pump (5-1/2 in. by 14 in. duplex @ 90% eff) $0.112 \mathrm{bbl} / \mathrm{stk}$
Cement program: LEAD cement $(13.8 \mathrm{lb} / \mathrm{gal})=2000 \mathrm{ft} \quad$ slurry yield $=1.59 \mathrm{ft}^{3} / \mathrm{sk}$
TAIL cement $(15.8 \mathrm{lb} / \mathrm{gal})=1000 \mathrm{ft} \quad$ slurry yield $=1.15 \mathrm{ft}^{3} / \mathrm{sk}$ Excess volume $=50 \%$

Step 1 Determine the following capacities:
a) Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\underline{17.5^{2}-13.375^{2}}$ 183.35

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\underline{127.35938}$ 183.35

Annular capacity $\quad=0.6946 \mathrm{ft}^{3} / \mathrm{ft}$
b) Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{12.615^{2}}{183.35}$
Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\underline{159.13823}$ 183.35

Casing capacity $\quad=0.8679 \mathrm{ft}^{3} / \mathrm{ft}$
c) Casing capacity, bbl/ft:

Casing capacity, $\mathrm{bbl} / \mathrm{ft}=\underline{12.615^{2}}$ 1029.4

Casing capacity, $\mathrm{bbl} / \mathrm{ft}=\underline{159.13823}$ 1029.4

Casing capacity $\quad=0.1545 \mathrm{bbl} / \mathrm{ft}$
Step 2 Determine the number of sacks of LEAD or FILLER cement required:
Sacks required $=2000 \mathrm{ft}^{\times 1} 0.6946 \mathrm{ft}^{3} / \mathrm{ft} \times 1.50 \div 1.59 \mathrm{ft}^{3} / \mathrm{sk}$
Sacks required $=1311$

Step 3 Determine the number of sacks of TAIL or NEAT cement required:
Sacks required annulus $=1000 \mathrm{ft} \times 0.6946 \mathrm{ft}^{3} / \mathrm{ft}^{\times 1.50} \div 1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Sacks required annulus $=906$
Sacks required casing $=44 \mathrm{ft} \times 0.8679 \mathrm{ft}^{3} / \mathrm{ft} \div 1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Sacks required casing $=33$
Total sacks of TAIL cement required:
Sacks $=906+33$
Sacks $=939$
Step 4 Determine the barrels of mud required to bump the top plug:
Casing capacity, $\mathrm{bbl}=(3000 \mathrm{ft}-44 \mathrm{ft}) \times 0.1545 \mathrm{bbl} / \mathrm{ft}$
Casing capacity $=456.7 \mathrm{bbl}$
Step 5 Determine the number of strokes required to bump the top plug:
Strokes $=456.7 \mathrm{bbl} \div 0.112 \mathrm{bbl} / \mathrm{stk}$
Strokes $=4078$

10. Calculations for the Number of Feet to Be Cemented

If the number of sacks of cement is known, use the following:
Step 1 Determine the following capacities:
a) Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{Dh}, \mathrm{in}^{2}{ }^{2}-\mathrm{Dp}, \mathrm{in}^{2}{ }^{2}}{183,35}$
b) Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{ID}, \text { in. }^{2}}{183.3 .5}$
Step 2 Determine the slurry volume, ft^{3}
Slurry vol, $\mathrm{ft}^{3}=$ number of sacks of cement to be used x slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$
Step 3 Determine the amount of cement, ft^{3}, to be left in casing:

Step 4 Determine the height of cement in the annulus - feet of cement:
Feet $=\left(\right.$ slurry vol, $\mathrm{ft}^{3}-$ cement remaining in casing, $\left.\mathrm{ft}^{3}\right)+\left(\right.$ annular capacity, $\left.\mathrm{ft}^{3} / \mathrm{ft}\right) \div$ excess
Step 5 Determine the depth of the top of the cement in the annulus:
Depth $\mathrm{ft}=$ casing setting depth, $\mathrm{ft}-\mathrm{ft}$ of cement in annulus
Step 6 Determine the number of barrels of mud required to displace the cement:
Barrels $=$ feet drill pipe \times drill pipe capacity, bbl/ft
Step 7 Determine the number of strokes required to displace the cement:
Strokes $=$ bbl required to displace cement \div pump output, bbl/stk
Example: From the data listed below, determine the following:

1. Height, ft , of the cement in the annulus
2. Amount, ft^{3}, of the cement in the casing
3. Depth, ft , of the top of the cement in the annulus
4. Number of barrels of mud required to displace the cement
5. Number of strokes required to displace the cement

Data: Casing setting depth $=3000 \mathrm{ft} \quad$ Hole size $=17-1 / 2 \mathrm{in}$.
Casing - $54.5 \mathrm{lb} / \mathrm{ft}=13-3 / 8 \mathrm{in} . \quad$ Casing ID $=12.615 \mathrm{in}$.
Drill pipe ($5.0 \mathrm{in} .-19.5 \mathrm{lb} / \mathrm{ft}$) $\quad=0.01776 \mathrm{bbl} / \mathrm{ft}$
Pump (7 in. by 12 in . triplex @ 95% eff.) $=0.136 \mathrm{bbl} / \mathrm{stk}$
Cementing tool (number of feet above shoe) $=100 \mathrm{ft}$
Cementing program: NEAT cement $=500 \mathrm{sk}$ Slurry yield $=1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Excess volume $=50 \%$

Step 1 Determine the following capacities:
a) Annular capacity between casing and hole, $\mathrm{ft}^{3} / \mathrm{ft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=17.5^{2}-13.375^{2}$
183.35

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\underline{127.35938}$ 183.35

Annular capacity $\quad=0.6946 \mathrm{ft}^{3} / \mathrm{ft}$
b) Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\underline{12.615^{2}}$

Casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{159.13823}{183.35}$
Casing capacity $\quad=0.8679 \mathrm{ft}^{3} / \mathrm{ft}$
Step 2 Determine the slurry volume, ft^{3} :
Slurry vol, $\mathrm{ft}^{3}=500 \mathrm{sk} \times 1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Slurry vol $=575 \mathrm{ft}^{3}$
Step 3 Determine the amount of cement, ft^{3}, to be left in the casing:
Cement in casing, $\mathrm{ft}^{3}=(3000 \mathrm{ft}-2900 \mathrm{ft}) \times 0.8679 \mathrm{ft}^{3} / \mathrm{ft}$
Cement in casing, $\mathrm{ft}^{3}=86.79 \mathrm{ft}^{3}$
Step 4 Determine the height of the cement in the annulus - feet of cement:
Feet $=\left(575 \mathrm{ft}^{3}-86.79 \mathrm{ft}^{3}\right) \div 0.6946 \mathrm{ft}^{3} / \mathrm{ft} \div 1.50$
Feet $=468.58$
Step 5 Determine the depth of the top of the cement in the annulus:
Depth $=3000 \mathrm{ft}-468.58 \mathrm{ft}$
Depth $=2531.42 \mathrm{ft}$
Step 6 Determine the number of barrels of mud required to displace the cement:
Barrels $=2900 \mathrm{ft} \times 0.01776 \mathrm{bbl} / \mathrm{ft}$
Barrels $=51.5$
Step 7 Determine the number of strokes required to displace the cement:
Strokes $=51.5 \mathrm{bbl} 0.136 \mathrm{bbl} / \mathrm{stk}$
Strokes $=379$

11. Setting a Balanced Cement Plug

Step 1 Determine the following capacities:
a) Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}$, between pipe or tubing and hole or casing:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{\mathrm{Dh} \text { in. }{ }^{2}-\mathrm{Dp} \text { in. }{ }^{2}}{183.35}$
b) Annular capacity, ft/bbl between pipe or tubing and hole or casing:

Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{\mathrm{Dh}, \mathrm{in}^{2}-\mathrm{Dp}, \mathrm{in} .^{2}}$
c) Hole or casing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Hole or capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\underline{\mathrm{ID} \text { in. }{ }^{2}}$ 183.35
d) Drill pipe or tubing capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Drill pipe or tubing capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\underline{\mathrm{ID} \text { in. } .^{2}}$ 183.35
e) Drill pipe or tubing capacity, bbl/ft:

Drill pipe or tubing capacity, $\mathrm{bbl} / \mathrm{ft}=\underline{\mathrm{ID} \text { in. }{ }^{2}}$ 1029.4

Step 2 Determine the number of SACKS of cement required for a given length of plug, OR determine the FEET of plug for a given number of sacks of cement:
a) Determine the number of SACKS of cement required for a given length of plug:

Sacks of $=$ plug length, ft x hole or casing capacity $\mathrm{ft}^{3} / \mathrm{ft}, \mathrm{x}$ excess \div slurry yield, $\mathrm{ft}^{3} / \mathrm{sk}$ cement

NOTE: If no excess is to be used, simply omit the excess step.
OR
b) Determine the number of FEET of plug for a given number of sacks of cement:

Feet $=$ sacks of cement x slurry yield, $\mathrm{ft}^{3} / \mathrm{sk} \div$ hole or casing capacity, $\mathrm{ft}^{3} / \mathrm{ft} \div$ excess
NOTE: If no excess is to be used, simply omit the excess step.
Step 3 Determine the spacer volume (usually water), bbl, to be pumped behind the slurry to balance the plug:

Spacer vol, $\mathrm{bbl}=$ annular capacity,\div excess x spacer vol ahead, x pipe or tubing capacity, $\mathrm{ft} / \mathrm{bbl} \mathrm{bbl} \mathrm{bbl} / \mathrm{ft}$

NOTE: If no excess is to be used, simply omit the excess step.
Step 4 Determine the plug length, ft , before the pipe is withdrawn:
Plug length, $\mathrm{ft}=$ sacks of x slurry y ield, \div annular capacity, x excess + pipe or tubing cement $\mathrm{ft}^{3} / \mathrm{sk} \quad \mathrm{ft}^{3} / \mathrm{ft}^{2}$ capacity, $\mathrm{ft}^{3} / \mathrm{ft}$

NOTE: If no excess is to be used, simply omit the excess step.

Step 5 Determine the fluid volume, bbl, required to spot the plug:
Vol, $\mathrm{bbl}=$ length of pipe - plug length, $\mathrm{ft} \times$ pipe or tubing - spacer vol behind or tubing, ft capacity, $\mathrm{bbl} / \mathrm{ft}$ slurry, bbl

Example 1: A 300 ft plug is to be placed at a depth of 5000 ft . The open hole size is $8-1 / 2 \mathrm{in}$. and the drill pipe is $3-1 / 2 \mathrm{in}$. $-13.3 \mathrm{lb} / \mathrm{ft}$; ID - 2.764 in . Ten barrels of water are to be pumped ahead of the slurry. Use a slurry yield of $1.15 \mathrm{ft}^{3} / \mathrm{sk}$. Use 25% as excess slurry volume:

Determine the following:

1. Number of sacks of cement required
2. Volume of water to be pumped behind the slurry to balance the plug
3. Plug length before the pipe is withdrawn
4. Amount of mud required to spot the plug plus the spacer behind the plug

Step 1 Determined the following capacities:
a) Annular capacity between drill pipe and hole, $\mathrm{ft}^{3} / \mathrm{ft}$:

Annular capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\frac{8.5^{2}-3.5^{2}}{183.35}$
Annular capacity $\quad=0.3272 \mathrm{ft}^{3} / \mathrm{ft}$
b) Annular capacity between drill pipe and hole, ft/bbl:

Annular capacity, $\mathrm{ft} / \mathrm{bbl}=\frac{1029.4}{8.5^{2}-3.5^{2}}$
Annular capacity $=17.1569 \mathrm{ft} / \mathrm{bbl}$
c) Hole capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Hole capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\underline{8.5^{2}}$
183.35

Hole capacity $=0.3941 \mathrm{ft}^{3} / \mathrm{ft}$
d) Drill pipe capacity, bbl/ft:

Drill pipe capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{2.764^{2}}{1029.4}$
Drill pipe capacity $\quad=0.00742 \mathrm{bbl} / \mathrm{ft}$
e) Drill pipe capacity, $\mathrm{ft}^{3} / \mathrm{ft}$:

Drill pipe capacity, $\mathrm{ft}^{3} / \mathrm{ft}=\underline{2.764^{2}}$ 183.35

Drill pipe capacity $\quad=0.0417 \mathrm{ft}^{3} / \mathrm{ft}$

Step 2 Determine the number of sacks of cement required:
Sacks of cement $=300 \mathrm{ft}^{x} 0.3941 \mathrm{ft}^{3} / \mathrm{ft} \times 1.25 \div 1.15 \mathrm{ft}^{3} / \mathrm{sk}$
Sacks of cement $=129$

Step 3 Determine the spacer volume (water), bbl, to be pumped behind the slurry to balance the plug:

Spacer vol, $\mathrm{bbl}=17.1569 \mathrm{ft} / \mathrm{bbl} \div 1.25 \times 10 \mathrm{bbl} \times 0.00742 \mathrm{bbl} / \mathrm{ft}$
Spacer vol $=1.018 \mathrm{bbl}$
Step 4 Determine the plug length, ft , before the pipe is withdrawn:
Plug length, $\mathrm{ft}=(129 \mathrm{sk} \times 1.15 \mathrm{ft} 3 / \mathrm{sk}) \div\left(0.3272 \mathrm{ft}^{3} / \mathrm{ft}^{\mathrm{s}} 1.25+0.0417 \mathrm{ft}^{3} / \mathrm{ft}\right)$
Plug length, $\mathrm{ft}=148.35 \mathrm{ft}^{3} \div 0.4507 \mathrm{ft}^{3} / \mathrm{ft}$
Plug length $=329 \mathrm{ft}$
Step 5 Determine the fluid volume, bbl, required to spot the plug:
Vol, bbl $=[(5000 \mathrm{ft}-329 \mathrm{ft}) \times 0.00742 \mathrm{bbl} / \mathrm{ft}]-1.0 \mathrm{bbl}$
Vol, bbl $=34.66 \mathrm{bbl}-1.0 \mathrm{bbl}$
Volume $=33.6 \mathrm{bbl}$
Example 2: Determine the number of FEET of plug for a given number of SACKS of cement:
A cement plug with 100 sk of cement is to be used in an $8-1 / 2$ in, hole. Use $1.15 \mathrm{ft}^{3} / \mathrm{sk}$ for the cement slurry yield. The capacity of $8-1 / 2 \mathrm{in}$. hole $=0.3941 \mathrm{ft}^{3} / \mathrm{ft}$. Use 50% as excess slurry volume:

Feet $=100 \mathrm{sk} \mathrm{x} 1.15 \mathrm{ft}^{3} / \mathrm{sk} \div 0.3941 \mathrm{ft}^{3} / \mathrm{ft} \div 1.50$
Feet $=194.5$

12. Differential Hydrostatic Pressure Between Cement in the Annulus and Mud Inside the Casing

1. Determine the hydrostatic pressure exerted by the cement and any mud remaining in the annulus.
2. Determine the hydrostatic pressure exerted by the mud and cement remaining in the casing.
3. Determine the differential pressure.

Determine the total hydrostatic pressure of cement and mud in the annulus

a) Hydrostatic pressure of mud in annulus:
$\mathrm{HP}, \mathrm{psi}=10.0 \mathrm{lb} / \mathrm{gal} \times 0.052 \times 5000 \mathrm{ft}$
$\mathrm{HP} \quad=2600 \mathrm{psi}$
b) Hydrostatic pressure of LEAD cement:

HP, psi $=13.8 \mathrm{lb} / \mathrm{gal} \times 0.052 \times 2000 \mathrm{ft}$
$\mathrm{HP}=1435 \mathrm{psi}$
c) Hydrostatic pressure of TAIL cement:
$\mathrm{HP}, \mathrm{psi}=15.8 \mathrm{lb} / \mathrm{gal} \times 0.052 \times 1000 \mathrm{ft}$
$\mathrm{HP}=822 \mathrm{psi}$
d) Total hydrostatic pressure in annulus:
$\mathrm{psi}=2600 \mathrm{psi}+1435 \mathrm{psi}+822 \mathrm{psi}$
$\mathrm{psi}=4857$

Determine the total pressure inside the casing

a) Pressure exerted by the mud:
$\mathrm{HP}, \mathrm{psi}=10.0 \mathrm{lb} / \mathrm{gal} \times 0.052 \times(8000 \mathrm{ft}-44 \mathrm{ft})$
$\mathrm{HP}=4137 \mathrm{psi}$
b) Pressure exerted by the cement:
$\mathrm{HP}, \mathrm{psi}=15.8 \mathrm{lb} / \mathrm{gal} \times 0.052 \times 44 \mathrm{ft}$
$\mathrm{HP}=36 \mathrm{psi}$
c) Total pressure inside the casing:
$\mathrm{psi}=4137 \mathrm{psi}+36 \mathrm{psi}$
$\mathrm{psi}=4173$
Differential pressure
$\mathrm{P}_{\mathrm{D}}=4857 \mathrm{psi}-4173 \mathrm{psi}$
$\mathrm{P}_{\mathrm{D}}=684 \mathrm{psi}$

13.

 Hydraulicing CasingThese calculations will determine if the casing will hydraulic out (move upward) when cementing

Determine the difference in pressure gradient, psi/ft, between the cement and the mud
$\mathrm{psi} / \mathrm{ft}=($ cement $\mathrm{wt}, \mathrm{ppg}-$ mud wt, ppg $) \times 0.052$
Determine the differential pressure (DP) between the cement and the mud $\mathrm{DP}, \mathrm{psi}=$ difference in pressure gradients, $\mathrm{psi} / \mathrm{ft} \mathrm{x}$ casing length, ft

Determine the area, $\mathbf{s q}$ in., below the shoe
Area, sq in. $=$ casing diameter, in. ${ }^{2} \times 0.7854$
Determine the Upward Force (\mathbf{F}), lb. This is the weight, total force, acting at the bottom of the shoe

Force, $\mathrm{lb}=$ area, sq in. x differential pressure between cement and mud, psi

Determine the Downward Force (W), lb. This is the weight of the casing

Weight, $\mathrm{lb}=$ casing $\mathrm{wt}, \mathrm{lb} / \mathrm{ft} \mathrm{x}$ length, ft x buoyancy factor

Determine the difference in force, lb

Differential force, $\mathrm{lb}=$ upward force, $\mathrm{lb}-$ downward force, lb
Pressure required to balance the forces so that the casing will not hydraulic out (move upward)
$\mathrm{psi}=$ force, $\mathrm{lb}-$ area, sq in.

Mud weight increase to balance pressure

Mud wt, ppg $=$ pressure required $. \div 0.052 \div$ casing length, ft to balance forces, psi

New mud weight, ppg

Mud wt, ppg = mud wt increase, ppg \div mud wt, ppg

Check the forces with the new mud weight

a) $\mathrm{psi} / \mathrm{ft}=($ cement $\mathrm{wt}, \mathrm{ppg}-$ mud wt, ppg $) \times 0.052$
b) $\mathrm{psi}=$ difference in pressure gradients, $\mathrm{psi} / \mathrm{ft} \mathrm{x}$ casing length, ft
c) Upward force, $\mathrm{lb}=$ pressure, psi x area, sq in.
d) Difference in = upward force, lb - downward force, lb force, lb

$$
\begin{array}{ll}
\text { Example: } \begin{array}{ll}
\text { Casing size }=133 / 8 \mathrm{in} .54 \mathrm{lb} / \mathrm{ft} & \text { Cement weight }=15.8 \mathrm{ppg} \\
\text { Mud weight }=8.8 \mathrm{ppg} & \text { Buoyancy factor }=0.8656 \\
\text { Well depth }=164 \mathrm{ft}(50 \mathrm{~m}) &
\end{array} .
\end{array}
$$

Determine the difference in pressure gradient, psi/ft, between the cement and the mud

$$
\begin{aligned}
& \mathrm{psi} / \mathrm{ft}=(15.8-8.8) \times 0.052 \\
& \mathrm{psi} / \mathrm{ft}=0.364
\end{aligned}
$$

Determine the differential pressure between the cement and the mud

$$
\begin{aligned}
\mathrm{psi} & =0.364 \mathrm{psi} / \mathrm{ft} \times 164 \mathrm{ft} \\
\mathrm{psi} & =60
\end{aligned}
$$

Determine the area, sq in., below the shoe

$$
\begin{aligned}
& \text { area, } \mathrm{sq} \text { in. } \\
& =13.3752 \times 0.7854 \\
& \text { area, } \\
& =140.5 \mathrm{sq} \mathrm{in} .
\end{aligned}
$$

Determine the upward force. This is the total force acting at the bottom of the shoe

```
Force, \(\mathrm{lb}=140.5 \mathrm{sq}\) in. x 60 psi
Force \(=8430 \mathrm{lb}\)
```


Determine the downward force. This is the weight of the casing

Weight, $\mathrm{lb}=54.5 \mathrm{lb} / \mathrm{ft} \times 164 \mathrm{ft} \times 0.8656$
Weight $=7737 \mathrm{lb}$

Determine the difference in force, lb

Differential force, $\mathrm{lb}=$ downward force, lb - upward force, lb
Differential force, $\mathrm{lb}=7737 \mathrm{lb}-8430 \mathrm{lb}$
Differential force $=-693 \mathrm{lb}$
Therefore: Unless the casing is tied down or stuck, it could possibly hydraulic out (move upward).

Pressure required to balance the forces so that the casing will not hydraulic out (move upward)

```
psi = 693 lb }\div140.5 sq in.
psi = 4.9
```


Mud weight increase to balance pressure

Mud wt, ppg $=4.9 \mathrm{psi} \div 0.052 \div 164 \mathrm{ft}$
Mud wt $\quad=0.57 \mathrm{ppg}$

New mud weight, ppg

New mud wt, ppg $=8.8 \mathrm{ppg}+0.6 \mathrm{ppg}$
New mud wt $=9.4 \mathrm{ppg}$

Check the forces with the new mud weight

a) $\mathrm{psi} / \mathrm{ft}=(15.8-9.4) \times 0.052$
$\mathrm{psi} / \mathrm{ft}=0.3328$
b) $\mathrm{psi}=0.3328 \mathrm{psi} / \mathrm{ft} \times 164 \mathrm{ft}$
$\mathrm{psi}=54.58$
c) Upward force, $\mathrm{lb}=54.58 \mathrm{psi} \times 140.5 \mathrm{sq} \mathrm{in}$.

Upward force $=7668 \mathrm{lb}$
d) Differential force, $\mathrm{lb}=$ downward force - upward force

Differential force, $\mathrm{lb}=7737 \mathrm{lb}-7668 \mathrm{lb}$
Differential force $=+69 \mathrm{lb}$

14. Depth of a Washout

Method 1

Pump soft line or other plugging material down the drill pipe and notice how many strokes are required before the pump pressure increases.

Depth of washout, $\mathrm{ft}=$ strokes required x pump output, $\mathrm{bbl} / \mathrm{stk} \div$ drill pipe capacity, $\mathrm{bbl} / \mathrm{ft}$

```
Example: Drill pipe = 3-1/2 in. 13.3 lb/ft
    Capacity = 0.00742 bbl/ft
    Pump output = 0.112 bbl/stk (5-1/2 in. by 14 in. duplex @ 90% efficiency)
```

NOTE:A pressure increase was noticed after 360 strokes.
Depth of washout, $\mathrm{ft}=360 \mathrm{stk} \times 0.112 \mathrm{bbl} / \mathrm{stk} \div 0.00742 \mathrm{bbl} / \mathrm{ft}$
Depth of washout $=5434 \mathrm{ft}$

Method 2

Pump some material that will go through the washout, up the annulus and over the shale shaker. This material must be of the type that can be easily observed as it comes across the shaker. Examples: carbide, corn starch, glass beads, bright coloured paint, etc.

Depth of $=$ strokes \times pump output,\div (drill pipe capacity, bbl/ft + annular capacity, bbl/ft $)$ washout, ft required $\mathrm{bbl} / \mathrm{stk}$

Example: Drill pipe $=3-1 / 2 \mathrm{in} .13 .3 \mathrm{lb} / \mathrm{ft}$ capacity $=0.00742 \mathrm{bbl} / \mathrm{ft}$
Pump output $\quad=0.112 \mathrm{bbl} / \mathrm{stk}$ (5-1/2 in. x 14 in . duplex @ 90% efficiency)
Annulus hole size $=8-1 / 2 \mathrm{in}$.
Annulus capacity $=0.0583 \mathrm{bbl} / \mathrm{ft}(8-1 / 2 \mathrm{in} . \mathrm{x} 3-1 / 2 \mathrm{in}$.)
NOTE: The material pumped down the drill pipe was noticed coming over the shaker after 2680 strokes.

Drill pipe capacity plus annular capacity:
$0.00742 \mathrm{bbl} / \mathrm{ft}+0.0583 \mathrm{bbl} / \mathrm{ft}=0.0657 \mathrm{bbl} / \mathrm{ft}$
Depth of washout, $\mathrm{ft}=2680$ stk $\times 0.112 \mathrm{bbl} / \mathrm{stk} \div 0.0657 \mathrm{bbl} / \mathrm{ft}$
Depth of washout $=4569 \mathrm{ft}$

15. Lost Returns - Loss of Overbalance

Number of feet of water in annulus

Feet $=$ water added, $\mathrm{bbl} \div$ annular capacity, bbl/ft
Bottomhole (BHP) pressure reduction
BHP decrease, $\mathrm{psi}=($ mud $w t, \mathrm{ppg}-\mathrm{wt}$ of water, ppg$) \times 0.052 \times(\mathrm{ft}$ of water added $)$

Equivalent mud weight at TD

EMW, ppg $=$ mud $w t$, ppg $-($ BHP decrease, $\mathrm{psi} \div 0.052 \div \mathrm{TVD}, \mathrm{ft})$
Example: Mud weight $=12.5 \mathrm{ppg}$ Water added $=150 \mathrm{bbl}$ required to fill annulus
Weight of water $=8.33 \mathrm{ppg} \quad$ Annular capacity $=0.1279 \mathrm{bbl} / \mathrm{ft}(12-1 / 4 \times 5.0 \mathrm{in}$.)
TVD $\quad=10,000 \mathrm{ft}$

Number of feet of water in annulus

Feet $=150 \mathrm{bbl} \div 0.1279 \mathrm{bbl} / \mathrm{ft}$
Feet $=1173$

Bottomhole pressure decrease

BHP decrease, $\mathrm{psi}=(12.5 \mathrm{ppg}-8.33 \mathrm{ppg}) \times 0.052 \times 1173 \mathrm{ft}$
BHP decrease $=254 \mathrm{psi}$

Equivalent mud weight at TD

EMW, ppg $=12.5-(254 \mathrm{psi} \div 0.052-10,000 \mathrm{ft})$
EMW $\quad=12.0 \mathrm{ppg}$

16.
 Stuck Pipe Calculations

Determine the feet of free pipe and the free point constant

Method 1

The depth at which the pipe is stuck and the number of feet of free pipe can be estimated by the drill pipe stretch table below and the following formula.

Table 2-2
Drill Pipe Stretch Table

ID, in.	Nominal Weight, Ib/ft	ID, in.	Wall Area, sq in.	Stretch Constant in/1000 lb /1000 ft	Free Point constant
$2-3 / 8$	4.85	1.995	1.304	0.30675	3260.0
	6.65	1.815	1.843	0.21704	4607.7
$2-7 / 8$	6.85	2.241	1.812	0.22075	4530.0
	10.40	2.151	2.858	0.13996	7145.0
$3-1 / 2$	9.50	2.992	2.590	0.15444	6475.0
	13.30	2.764	3.621	0.11047	9052.5
	15.50	2.602	4.304	0.09294	10760.0
4.0	11.85	3.476	3.077	0.13000	7692.5
	14.00	3.340	3.805	0.10512	9512.5
$4-1 / 2$	13.75	3.958	3.600	0.11111	9000.0
	16.60	3.826	4.407	0.09076	11017.5
	18.10	3.754	4.836	0.08271	12090.0
5.0	20.00	3.640	5.498	0.07275	13745.0
	16.25	4.408	4.374	0.09145	10935.0
$5-1 / 2$	19.50	4.276	5.275	0.07583	13187.5
	21.90	4.778	5.828	0.06863	14570.0
$6-5 / 8$	24.70	4.670	6.630	0.06033	16575.0

Feet of - stretch, in. x free point constant free pipe - pull force in thousands of pounds
Example: 3-1/2 in. $13.30 \mathrm{lb} / \mathrm{ft}$ drill pipe 20 in . of stretch with $35,000 \mathrm{lb}$ of pull force
From drill pipe stretch table: Free point constant $=9052.5$ for $3-1 / 2 \mathrm{in}$. drill pipe $13.30 \mathrm{lb} / \mathrm{ft}$
Feet of free pipe $=\underline{20 \text { in. } x 9052.5}$
35
Feet of free pipe $=5173 \mathrm{ft}$

Determine free point constant (FPC)

The free point constant can be determined for any type of steel drill pipe if the outside diameter, in., and inside diameter, in., are known:
$\mathrm{FPC}=$ As x 2500
where: As = pipe wall cross sectional area, sq in.
Example 1: From the drill pipe stretch table: 4-1/2 in. drill pipe $16.6 \mathrm{lb} / \mathrm{ft}-\mathrm{ID}=3.826 \mathrm{in}$.
FPC $=(452-3.8262 \times 0.7854) \times 2500$
$\mathrm{FPC}=4.407 \times 2500$
$\mathrm{FPC}=11,017.5$
Example 2: Determine the free point constant and the depth the pipe is stuck using the following data:
$2-3 / 8 \mathrm{in}$. tubing $-6.5 \mathrm{lb} / \mathrm{ft}-\mathrm{ID}=2.441 \mathrm{in} .25 \mathrm{in}$. of stretch with $20,000 \mathrm{lb}$ of pull force
a) Determine free point constant (FPC):
$\mathrm{FPC}=\left(2.875^{2}-2.441^{2} \times 0.7854\right) \times 2500$
$\mathrm{FPC}=1.820 \times 2500$
$\mathrm{FPC}=4530$
b) Determine the depth of stuck pipe:

Feet of free pipe $=\frac{25 \text { in. } \times 4530}{20 \text { Feet }}$
Feet of free pipe $=5663 \mathrm{ft}$

Method 2

Free pipe, $\mathrm{ft}=\frac{735,294 \times \mathrm{e} \times \mathrm{Wdp}}{\text { differential pull, } \mathrm{lb}}$
where $\mathrm{e}=$ pipe stretch, in.
$\mathrm{Wdp}=$ drill pipe weight, lb/ft (plain end)
Plain end weight, $\mathrm{lb} / \mathrm{ft}$, is the weight of drill pipe excluding tool joints:
Weight, $\mathrm{lb} / \mathrm{ft}=2.67 \times$ pipe OD, in. $^{2}-$ pipe; ID, in. ${ }^{2}$
Example: Determine the feet of free pipe using the following data:
5.0 in. drill pipe; ID - 4.276 in.; $19.5 \mathrm{lb} / \mathrm{ft}$

Differential stretch of pipe $=24 \mathrm{in}$.
Differential pull to obtain stretch $=30,000 \mathrm{lb}$

Weight, $\mathrm{lb} / \mathrm{ft}=2.67 \times\left(5.0^{2}-4.276^{2}\right)$
Weight $\quad=17.93 \mathrm{lb} / \mathrm{ft}$
Free pipe, $\mathrm{ft}=735,294 \times 24 \times 17.93$

$$
30,000
$$

Free pipe $=10,547 \mathrm{ft}$

Determine the height, ft of unweighted spotting fluid that will balance formation pressure in the annulus:

a) Determine the difference in pressure gradient, psi/ft, between the mud weight and the spotting fluid:
$\mathrm{psi} / \mathrm{ft}=($ mud wt, $\mathrm{ppg}-$ spotting fluid $\mathrm{wt}, \mathrm{ppg}) \times 0.052$
b) Determine the height, ft , of unweighted spotting fluid that will balance formation pressure in the annulus:

Height $\mathrm{ft}=$ amount of overbalance, $\mathrm{psi} \div$ difference in pressure gradient, $\mathrm{psi} / \mathrm{ft}$
Example. Use the following data to determine the height, ft , of spotting fluid that will balance formation pressure in the annulus:

Data: Mud weight $\quad=11.2 \mathrm{ppg} \quad$ Weight of spotting fluid $=7.0 \mathrm{ppg}$
Amount of overbalance $=225.0 \mathrm{psi}$
a) Difference in pressure gradient, psi/ft:
$\mathrm{psi} / \mathrm{ft}=(11.2 \mathrm{ppg}-7.0 \mathrm{ppg}) \times 0.052$
$\mathrm{psi} / \mathrm{ft}=0.2184$
a) Determine the height, ft . of unweighted spotting fluid that will balance formation pressure in the annulus:

Height, $\mathrm{ft}=225 \mathrm{psi} \div 0.2184 \mathrm{psi} / \mathrm{ft}$
Height $=1030 \mathrm{ft}$
Therefore: Less than 1030 ft of spotting fluid should be used to maintain a safety factor to prevent a kick or blow-out.

17. Calculations Required for Spotting Pills

The following will be determined:
a) Barrels of spotting fluid (pill) required
b) Pump strokes required to spot the pill

Step 1 Determine the annular capacity, bbl/ft, for drill pipe and drill collars in the annulus:
Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\underline{\mathrm{Dh} \text { in. }{ }^{2}-\mathrm{Dp} \text { in. }{ }^{2}}$
1029.4

Step 2 Determine the volume of pill required in the annulus:
Vopl bbl = annular capacity, bbl/ft x section length, $\mathrm{ft} \times$ washout factor
Step 3 Determine total volume, bbl, of spotting fluid (pill) required:
Barrels $=$ Barrels required in annulus plus barrels to be left in drill string
Step 4 Determine drill string capacity, bbl:
Barrels $=$ drill pipe/drill collar capacity, $\mathrm{bbl} / \mathrm{ft} \mathrm{x}$ length, ft

Step 5 Determine strokes required to pump pill:
Strokes $=$ vol of pill, bbl pump output, bbl/stk
Step 6 Determine number of barrels required to chase pill:
Barrels $=$ drill string vol, $\mathrm{bbl}-$ vol left in drill string, bbl
Step 7 Determine strokes required to chase pill:
Strokes $=$ bbl required to \div pump output, + strokes required to
chase pill bbl/stk displace surface system
Step 8 Total strokes required to spot the pill:
Total strokes $=$ strokes required to pump pill + strokes required to chase pill
Example: Drill collars are differentially stuck. Use the following data to spot an oil based pill around the drill collars plus 200 ft (optional) above the collars. Leave 24 bbl in the drill string:

Data: Well depth $=10,000 \mathrm{ft} \quad$ Pump output $=0.117 \mathrm{bbl} / \mathrm{stk}$
Hole diameter $=8-1 / 2 \mathrm{in} . \quad$ Washout factor $=20 \%$
Drill pipe $\quad=5.0 \mathrm{in} .19 .5 \mathrm{lb} / \mathrm{ft} \quad$ Drill collars $=6-1 / 2 \mathrm{in}$. OD x 2-1/2 in. ID
capacity $\quad=0.01776 \mathrm{bbl} / \mathrm{ft} \quad$ capacity $\quad=0.0061 \mathrm{bbl} / \mathrm{ft}$
length $=9400 \mathrm{ft}$ length $=600 \mathrm{ft}$

Strokes required to displace surface system from suction tank to the drill pipe $=80$ stk.

Step 1 Annular capacity around drill pipe and drill collars:
a) Annular capacity around drill collars:

Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{8.5^{2}-6.5^{2}}{1029.4}$
Annular capacity $\quad=0.02914 \mathrm{bbl} / \mathrm{ft}$
b) Annular capacity around drill pipe:

Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{8.5^{2}-5.0^{2}}{1029.4}$
Annular capacity $\quad=0.0459 \mathrm{bbl} / \mathrm{ft}$
Step 2 Determine total volume of pill required in annulus:
a) Volume opposite drill collars:

Vol, $\mathrm{bbl}=0.02914 \mathrm{bbl} / \mathrm{ft} \times 600 \mathrm{ft} \times 1.20$
$\mathrm{Vol}=21.0 \mathrm{bbl}$
b) Volume opposite drill pipe:

Vol, bbl $=0.0459 \mathrm{bbl} / \mathrm{ft} \times 200 \mathrm{ft} \times 1.20$
$\mathrm{Vol}=11.0 \mathrm{bbl}$
c) Total volume bbl, required in annulus:

Vol, bbl $=21.0 \mathrm{bbl}+11.0 \mathrm{bbl}$
Vol $=32.0 \mathrm{bbl}$

Step 3 Total bbl of spotting fluid (pill) required:
Barrels $=32.0 \mathrm{bbl}$ (annulus) +24.0 bbl (drill pipe)
Barrels $=56.0 \mathrm{bbl}$

Step 4 Determine drill string capacity:
a) Drill collar capacity, bbl:

Capacity, $\mathrm{bbl}=0.0062 \mathrm{bbl} / \mathrm{ft} \times 600 \mathrm{ft}$
Capacity $\quad=3.72 \mathrm{bbl}$
b) Drill pipe capacity, bbl:

Capacity, $\mathrm{bbl}=0.01776 \mathrm{bbl} / \mathrm{ft} \times 9400 \mathrm{ft}$
Capacity $\quad=166.94 \mathrm{bbl}$
c) Total drill string capacity, bbl:

Capacity, bbl $=3.72 \mathrm{bbl}+166.94 \mathrm{bbl}$
Capacity $=170.6 \mathrm{bbl}$
Step 5 Determine strokes required to pump pill:
Strokes $=56 \mathrm{bbl} \div 0.117 \mathrm{bbl} /$ stk
Strokes $=479$

Step 6 Determine bbl required to chase pill:
Barrels $=170.6 \mathrm{bbl}-24 \mathrm{bbl}$
Barrels $=146.6$

Step 7 Determine strokes required to chase pill:
Strokes $=146.6 \mathrm{bbl} \div 0.117 \mathrm{bbl} / \mathrm{stk}+80$ stk
Strokes $=1333$
Step 8 Determine strokes required to spot the pill:
Total strokes $=479+1333$
Total strokes $=1812$

18. Pressure Required to Break Circulation

Pressure required to overcome the mud's gel strength inside the drill string
$\operatorname{Pgs}=(\mathrm{y} \div 300 \div \mathrm{d}) \mathrm{L}$
where Pgs = pressure required to break gel strength, psi
$y=10 \mathrm{~mm}$ gel strength of drilling fluid, $\mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}$
$\mathrm{d}=$ inside diameter of drill pipe, in.
$\mathrm{L}=$ length of drill string, ft
Example: $\mathrm{y}=10 \mathrm{lb} / 100 \mathrm{sq} \mathrm{ft} \mathrm{d}=4.276 \mathrm{in} . \mathrm{L}=12,000 \mathrm{ft}$

$$
\begin{aligned}
& \operatorname{Pgs}=(10 \div 300-4.276) 12,000 \mathrm{ft} \\
& \mathrm{Pgs}=0.007795 \times 12,000 \mathrm{ft} \\
& \mathrm{Pgs}=93.5 \mathrm{psi}
\end{aligned}
$$

Therefore, approximately 94 psi would be required to break circulation.

Pressure required to overcome the mud's gel strength in the annulus

$\operatorname{Pgs}=y \div[300(D h$, in. $-D p$, in. $)] \times L$
where Pgs = pressure required to break gel strength, psi
$\mathrm{L}=$ length of drill string, ft
$\mathrm{y}=10 \mathrm{~mm}$. gel strength of drilling fluid, $\mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}$
Dh = hole diameter, in.
$\mathrm{Dp}=$ pipe diameter, in.
Example: $\mathrm{L}=12,000 \mathrm{ft} \quad \mathrm{y}=10 \mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}$
$\mathrm{Dh}=12-1 / 4 \mathrm{in} . \quad \mathrm{Dp}=5.0 \mathrm{in}$.
$\operatorname{Pgs}=10 \div[300 \times(12.25-5.0)] \times 12,000 \mathrm{ft}$
$\mathrm{Pgs}=10 \div 2175 \mathrm{x} 12,000 \mathrm{ft}$
$\operatorname{Pgs}=55.2 \mathrm{psi}$
Therefore, approximately 55 psi would be required to break circulation.

References

API Specification for Oil- Well Cements and Cement Additives, American Petroleum Institute, New York, N.Y., 1972.
Chenevert, Martin E. and Reuven Hollo, TI-59 Drilling Engineering Manual, Penn Well Publishing Company, Tulsa, 1981.
Crammer Jr., John L., Basic Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1983.
Drilling Manual, International Association of Drilling Contractors, Houston, Texas, 1982. Murchison, Bill, Murchison Drilling Schools Operations Drilling Technology and Well Control Manual, Albuquerque, New Mexico.
Oil-Well Cements and Cement Additives, API Specification BA, December 1979.

CHAPTER THREE

DRILLING FLUIDS

1.

 Increase Mud DensityMud weight, ppg, increase with barite (average specific gravity of barite - 4.2)
Barite, $\mathrm{sk} / 100 \mathrm{bbl}=\frac{1470\left(\mathrm{~W}_{2}\right.}{\left.35-\mathrm{W}_{1}\right)}$
Example: Determine the number of sacks of barite required to increase the density of 100 bbl of $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ mud to $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Barite $\mathrm{sk} / 100 \mathrm{bbl}=\frac{1470(14.0-12.0)}{35-14.0}$
Barite, sk/100 bbl $=\underline{2940}$
21.0

Barite $=140$ sk/ 100 bbl

Volume increase, bbl, due to mud weight increase with barite

Volume increase, per $100 \mathrm{bbl}=\frac{100\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{35-\bar{W}_{2}}$
Example: Determine the volume increase when increasing the density from $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Volume increase, per $100 \mathrm{bbl}=\frac{100(14.0-12.0)}{35-14.0}$
Volume increase, per $100 \mathrm{bbl}=\frac{200}{21}$
Volume increase $\quad=9.52 \mathrm{bbl}$ per 100 bbl

Starting volume, bbl, of original mud weight required to give a predetermined final volume of desired mud weight with barite

Starting volume, $\mathrm{bbl}=\underline{\mathrm{V}_{\mathrm{E}}}\left(\frac{\left(35-\mathrm{W}_{2}\right)}{35-\mathrm{W}_{1}}\right.$
Example: Determine the starting volume, bbl , of $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ mud required to achieve $100 \mathrm{bbl}\left(\mathrm{V}_{\mathrm{F}}\right)$ of $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$ mud with barite:

Starting volume, $\mathrm{bbl}=\frac{100(35-14.0)}{35-12.0}$
Starting volume, $\mathrm{bbl}=\frac{2100}{23}$
Starting volume $=91.3 \mathrm{bbl}$

Mud weight increase with calcium carbonate (SG-2.7)

NOTE: The maximum practical mud weight attainable with calcium carbonate is 14.0 ppg .
Sacks/ $100 \mathrm{bbl}=\frac{945\left(\mathrm{~W}_{2}\right.}{\left.22.5-\mathrm{W}_{1}\right)}$
Example: Determine the number of sacks of calcium carbonate/100 bbl required to increase the density from $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to $13.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Sacks/ $100 \mathrm{bbl}=\frac{945(13.0-12.0)}{22.5-13.0}$
Sacks/ $100 \mathrm{bbl}=\underline{945} 9.5$
Sacks/ $100 \mathrm{bbl}=99.5$

Volume increase, bbl, due to mud weight increase with calcium carbonate

Volume increase, per $100 \mathrm{bbl}=\frac{100\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{22.5-\mathrm{W}_{2}}$
Example. Determine the volume increase, $\mathrm{bbl} / 100 \mathrm{bbl}$, when increasing the density from $12.0 \mathrm{ppg}\left(\mathrm{W}_{3}\right)$ to $13.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Volume increase, per $100 \mathrm{bbl}=\frac{100(13.0-12.0)}{22.5-13.0}$
Volume increase, per $100 \mathrm{bbl}=\frac{100}{9.5}$
Volume increase $\quad=10.53 \mathrm{bbl}$ per 100 bbl

Starting volume, bbl, of original mud weight required to give a predetermined final volume of desired mud weight with calcium carbonate

Starting volume, $\mathrm{bbl}=\mathrm{V}_{\mathrm{E}} \frac{(22.5-\mathrm{W} 2)}{22.5-\mathrm{W}_{1}}$
Example: Determine the starting volume, bbl , of $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ mud required to achieve $100 \mathrm{bbl}\left(\mathrm{V}_{\mathrm{F}}\right)$ of $13.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$ mud with calcium carbonate:

Starting volume, $\mathrm{bbl}=\frac{100(22.5-13.0)}{22.5-12.0}$
Starting volume, $\mathrm{bbl}=\underline{950}$ 10.5

Starting volume $=90.5 \mathrm{bbl}$

Mud weight increase with hematite (SG - 4.8)

Hematite, sk/100 bbl $=\frac{1680\left(\mathrm{~W}_{2}-\mathrm{W} \sim\right)}{40-\mathrm{W}_{2}}$
Example: Determine the hematite, sk/100 bbl, required to increase the density of 100 bbl of $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Hematite, $\mathrm{sk} / 100 \mathrm{bbl}=\underline{1680(14.0-12.0)}$

$$
40-14.0
$$

Hematite, $\mathrm{sk} / 100 \mathrm{bbl}=\frac{3360}{26}$
Hematite $=129.2 \mathrm{sk} / 100 \mathrm{bbl}$

Volume increase, bbl, due to mud weight increase with hematite

Volume increase, per $100 \mathrm{bbl}=\frac{100\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)}{40-\mathrm{W}_{2}}$
Example: Determine the volume increase, $\mathrm{bbl} / 100 \mathrm{bbl}$, when increasing the density from $12.0 \mathrm{ppg}\left(\mathrm{W}\right.$,) to $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Volume increase, per $100 \mathrm{bbl}=\frac{100(14.0-12.0)}{40-14.0}$
Volume increase, per $100 \mathrm{bbl}=\frac{200}{26}$
Volume increase $\quad=7.7 \mathrm{bbl}$ per 100 bbl

Starting volume, bbl, of original mud weight required to give a predetermined final volume of desired mud weight with hematite

Starting volume, $\mathrm{bbl}=\mathrm{V}_{\underline{E}} \frac{(40.0-\mathrm{W} 2)}{40-\mathrm{W}_{1}}$
Example: Determine the starting volume, bbl, of $12.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ mud required to achieve $100 \mathrm{bbl}\left(\mathrm{V}_{\mathrm{F}}\right)$ of $14.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$ mud with hematite:

Starting volume, $\mathrm{bbl}=\frac{100(40-14.0)}{40-12.0}$
Starting volume, $\mathrm{bbl}=\frac{2600}{28}$
Starting volume $=92.9 \mathrm{bbl}$

Mud weight reduction with water

Water, bbl $=\frac{\mathrm{V}_{1}\left(\frac{\mathrm{~W}_{1}}{\left.\mathrm{~W}_{2}-\mathrm{W}_{2}\right)}-\mathrm{Dw}\right.}{\underline{-1}}$
Example: Determine the number of barrels of water weighing $8.33 \mathrm{ppg}(\mathrm{Dw})$ required to reduce $100 \mathrm{bbl}\left(\mathrm{V}_{1}\right)$ of $14.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to $12.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Water, $\mathrm{bbl}=\underline{100(14.0-12.0)}$

$$
12.0-8.33
$$

Water, $\mathrm{bbl}=\underline{2000}$
3.67

Water $=54.5 \mathrm{bbl}$

Mud weight reduction with diesel oil

Diesel, $\mathrm{bbl}=\frac{\mathrm{V}_{1}\left(\mathrm{~W}_{1}-\mathrm{W}_{2}\right)}{\mathrm{W}_{2}-\mathrm{Dw}}$
Example: Determine the number of barrels of diesel weighing $7.0 \mathrm{ppg}(\mathrm{Dw})$ required to reduce $100 \mathrm{bbl}\left(\mathrm{V}_{1}\right)$ of $14.0 \mathrm{ppg}\left(\mathrm{W}_{1}\right)$ to $12.0 \mathrm{ppg}\left(\mathrm{W}_{2}\right)$:

Diesel, $\mathrm{bbl}=\underline{100(14.0-12.0)}$

$$
12.0-7.0
$$

Diesel, $\mathrm{bbl}=\underline{200}$

$$
5.0
$$

Diesel $=40 \mathrm{bbl}$

3. Mixing Fluids of Different Densities

Formula: $\quad\left(\mathrm{V}_{1} \mathrm{D}_{1}\right)+\left(\mathrm{V}_{2} \mathrm{D}_{2}\right)=\mathrm{V}_{\mathrm{F}} \mathrm{D}_{\mathrm{F}}$

$$
\begin{array}{ll}
\text { where } \mathrm{V}_{1}=\text { volume of fluid } 1 \text { (bbl, gal, etc.) } & \mathrm{D}_{1}=\text { density of fluid } 1\left(\mathrm{ppg}, \mathrm{lb} / \mathrm{ft}^{3}, \text { etc. }\right) \\
\mathrm{V}_{2}=\text { volume of fluid } 2(\mathrm{bbl}, \text { gal, etc. }) & \mathrm{D}_{2}=\text { density of fluid } 2\left(\mathrm{ppg}, \mathrm{lb} / \mathrm{ft}^{3}, \text { etc. }\right) \\
\mathrm{V}_{\mathrm{F}}=\text { volume of final fluid mix } & \mathrm{D}_{\mathrm{F}}=\text { density of final fluid mix }
\end{array}
$$

Example 1: A limit is placed on the desired volume:
Determine the volume of 11.0 ppg mud and 14.0 ppg mud required to build 300 bbl of 11.5 ppg mud:

Given: 400 bbl of 11.0 ppg mud on hand, and 400 bbl of 14.0 ppg mud on hand

Solution: let $\mathrm{V}_{1}=\mathrm{bbl}$ of 11.0 ppg mud
$\mathrm{V}_{2}=\mathrm{bbl}$ of 14.0 ppg mud
then
a) $\mathrm{V}_{1}+\mathrm{V}_{2}=300 \mathrm{bbl}$
b) $(11.0) \mathrm{V}_{1}+(14.0) \mathrm{V}_{2}=(11.5)(300)$

Multiply Equation A by the density of the lowest mud weight $\left(\mathrm{D}_{1}=11.0 \mathrm{ppg}\right)$ and subtract the result from Equation B:
b) $(11.0)\left(\mathrm{V}_{1}\right)+(14.0)\left(\mathrm{V}_{2}\right)=3450$

- a) $(11.0)\left(\mathrm{V}_{1}\right)+(11.0)\left(\mathrm{V}_{2}\right)=3300$
$3 \quad \mathrm{~V}_{2}=150$
$V_{2}=\frac{150}{3}$
$\mathrm{V}_{2}=50$
Therefore: $\quad \mathrm{V}_{2}=50 \mathrm{bbl}$ of 14.0 ppg mud

$$
\mathrm{V}_{1}+\mathrm{V}_{2}=300 \mathrm{bbl}
$$

$\mathrm{V}_{1}=300-50$
$\mathrm{V}_{1}=250 \mathrm{bbl}$ of 11.0 ppg mud
Check:

$$
\begin{array}{ll}
\mathrm{V}_{1}=50 \mathrm{bbl} & \mathrm{D}_{1}=14.0 \mathrm{ppg} \\
\mathrm{~V}_{2}=150 \mathrm{bbl} & \mathrm{D}_{2}=11.0 \mathrm{ppg} \\
\mathrm{~V}_{\mathrm{F}}=300 \mathrm{bbl} & \mathrm{D}_{\mathrm{F}}=\text { final density }, \mathrm{ppg}
\end{array}
$$

$$
\begin{aligned}
(50)(14.0)+(250)(11.0) & =300 \mathrm{D}_{\mathrm{F}} \\
700+2750 & =300 \mathrm{D}_{\mathrm{F}} \\
3450 & =300 \mathrm{D}_{\mathrm{F}} \\
3450 \div 300 & =\mathrm{D}_{\mathrm{F}} \\
11.5 \mathrm{ppg} & =\mathrm{D}_{\mathrm{F}}
\end{aligned}
$$

Example 2: No limit is placed on volume:
Determine the density and volume when the two following muds are mixed together:
Given: 400 bbl of 11.0 ppg mud, and 400 bbl of 14.0 ppg mud

Solution: let $\mathrm{V}_{1}=\mathrm{bbl}$ of 11.0 ppg mud
$\mathrm{D}_{1}=$ density of 11.0 ppg mud
$\mathrm{V}_{2}=\mathrm{bbl}$ of 14.0 ppg mud
$\mathrm{D}_{2}=$ density of 14.0 ppg mud
$\mathrm{V}_{\mathrm{F}}=$ final volume, bbl
$\mathrm{D}_{\mathrm{F}}=$ final density, ppg
Formula: $\quad\left(\mathrm{V}_{1} \mathrm{D}_{1}\right)+\left(\mathrm{V}_{2} \mathrm{D}_{2}\right)=\mathrm{V}_{\mathrm{F}} \mathrm{D}_{\mathrm{F}}$

$$
\begin{aligned}
(400)(11.0)+(400)(14.0) & =800 \mathrm{D}_{\mathrm{F}} \\
4400+5600 & =800 \mathrm{D}_{\mathrm{F}} \\
10,000 & =800 \mathrm{D}_{\mathrm{F}} \\
10,000 \div 800 & =\mathrm{D}_{\mathrm{F}} \\
12.5 \mathrm{ppg} & =\mathrm{D}_{\mathrm{F}}
\end{aligned}
$$

Therefore: final volume $=800 \mathrm{bbl}$
final density $=12.5 \mathrm{ppg}$

4. Oil Based Mud Calculations

Density of oil/water mixture being used

$\left(V_{1}\right)(\mathrm{D})+,\left(\mathrm{V}_{2}\right)\left(\mathrm{D}_{2}\right)=\left(\mathrm{V} \sim+\mathrm{V}_{2}\right) \mathrm{D}_{\mathrm{F}}$
Example: If the oil/water (o/w) ratio is $75 / 25\left(75 \%\right.$ oil, V_{1}, and 25% water $\left.\mathrm{V}_{2}\right)$, the following material balance is set up:

NOTE: The weight of diesel oil, $\mathrm{D}_{1}=7.0 \mathrm{ppg}$
The weight of water, $\quad \mathrm{D}_{2}=8.33 \mathrm{ppg}$

$$
\begin{aligned}
(0.75)(7.0)+(0.25)(8.33) & =(0.75+0.25) \mathrm{D}_{\mathrm{F}} \\
5.25+2.0825 & =1.0 \mathrm{D}_{\mathrm{F}} \\
7.33 & =\mathrm{D}_{\mathrm{F}}
\end{aligned}
$$

Therefore: \quad The density of the oil/water mixture $=7.33 \mathrm{ppg}$

Starting volume of liquid (oil plus water) required to prepare a desired volume of mud

$$
\mathrm{SV}=\frac{35-\mathrm{W}_{2}}{35-\mathrm{W}_{1}} \times \mathrm{DV}
$$

where $\quad \mathrm{SV}=$ starting volume, bbl
$\mathrm{W}_{1}=$ initial density of oil/water mixture, ppg
$\mathrm{W}_{2}=$ desired density, ppg
$\mathrm{Dv}=$ desired volume, bbl
Example: $\mathrm{W}_{1}=7.33 \mathrm{ppg}(\mathrm{o} / \mathrm{w}$ ratio $-75 / 25) \quad \mathrm{W}_{2}=16.0 \mathrm{ppg} \quad \mathrm{Dv}=100 \mathrm{bbl}$
Solution:
$\mathrm{SV}=\frac{35-16}{35-7.33} \times 100$
$\mathrm{SV}=\frac{19}{27.67} \times 100$
$\mathrm{SV}=0.68666 \times 100$
$\mathrm{SV}=68.7 \mathrm{bbl}$

Oil/water ratio from retort data

Obtain the percent-by-volume oil and percent-by-volume water from retort analysis or mud still analysis. From the data obtained, the oil/water ratio is calculated as follows:
a) $\%$ oil in liquid phase $=$ \qquad \% by vol oil x 100
b) $\%$ water in liquid phase $=$ \qquad x 100
c) Result: The oil/water ratio is reported as the percent oil and the percent water.

Example: Retort analysis: \% by volume oil =51
$\%$ by volume water $=17$
$\%$ by volume solids $=32$
Solution:
a) $\%$ oil in liquid phase $=\frac{51}{51 \times 17} \times 100$
$\%$ oil in liquid phase $=75$
b) $\%$ water in liquid phase $=\frac{17}{51+17} \times 100$
$\%$ water in liquid phase $=25$
c) Result: Therefore, the oil/water ratio is reported as $75 / 25$: 75% oil and 25% water.

Changing oil/water ratio

NOTE: If the oil/water ratio is to be increased, add oil; if it is to be decreased, add water.
Retort analysis: \% by volume oil =51
$\%$ by volume water $=17$
\% by volume solids $=32$
The oil/water ratio is $75 / 25$.
Example 1: Increase the oil/water ratio to 80/20:
In 100 bbl of this mud, there are 68 bbl of liquid (oil plus water). To increase the oil/water ratio, add oil. The total liquid volume will be increased by the volume of the oil added, but the water volume will not change. The 17 bbl of water now in the mud represents 25% of the liquid volume, but it will represent only 20% of the new liquid volume.

Therefore: let $\mathrm{x}=$ final liquid volume

$$
\text { then, } \begin{aligned}
0.20 \mathrm{x} & =17 \\
\mathrm{x} & =17 \div 0.20 \\
\mathrm{x} & =85 \mathrm{bbl}
\end{aligned}
$$

The new liquid volume $=85 \mathrm{bbl}$

Barrels of oil to be added:
Oil, bbl = new liquid vol — original liquid vol
Oil, bbl $=85-68$
Oil $=17 \mathrm{bbl}$ oil per 100 bbl of mud
Check the calculations. If the calculated amount of liquid is added, what will be the resulting oil/water ratio?

$$
\% \text { oil in liquid phase }=\frac{\text { original vol oil }+ \text { new vol oil }}{\text { original liquid oil }+ \text { new oil added }} \times 100
$$

$\%$ oil in liquid phase $=\frac{51+17}{68+17} \times 100$
$\%$ oil in liquid phase $=80$
$\%$ water would then be: $100-80=20$
Therefore: The new oil/water ratio would be 80/20.

Example 2: Change the oil/water ratio to 70/30:
As in Example I, there are 68 bbl of liquid in 100 bbl of this mud. In this case, however, water will be added and the volume of oil will remain constant. The 51 bbl of oil represents 75% of the original liquid volume and 70% of the final volume:

Therefore: let $\mathrm{x}=$ final liquid volume

$$
\text { then, } \begin{aligned}
0.70 \mathrm{x} & =51 \\
\mathrm{x} & =51 \div 0.70 \\
\mathrm{x} & =73 \mathrm{bbl}
\end{aligned}
$$

Barrels of water to be added:
Water, $\mathrm{bbl}=$ new liquid vol - original liquid vol
Water, $\mathrm{bbl}=73-68$
Water $=5 \mathrm{bbl}$ of water per 100 bbl of mud
Check the calculations. If the calculated amount of water is added, what will be the resulting oil/water ratio?
$\%$ water in liquid phase $=\frac{17+5}{68+5} \times 100$
$\%$ water in liquid $=30$
$\%$ oil in liquid phase $\quad=100-30=70$
Therefore, the new oil/water ratio would be 70/30.
5. Solids Analysis

Basic solids analysis calculations

NOTE: Steps $1-4$ are performed on high salt content muds. For low chloride muds begin with Step 5.

Step 1 Percent by volume saltwater (SW)
$\mathrm{SW}=\left(5.88 \times 10^{-8}\right) \times\left[(\mathrm{ppm} \mathrm{Cl})^{1.2}+1\right] \times \%$ by vol water
Step 2 Percent by volume suspended solids (SS)
$\mathrm{SS}=100-\%$ by vol oil $-\%$ by vol SW
Step 3 Average specific gravity of saltwater (ASGsw)
ASGsw $=(\mathrm{ppm} \mathrm{Cl})^{0.95} \times(1.94 \times 10-6)+1$
Step 4 Average specific gravity of solids (ASG)
$\mathrm{ASG}=\left(\frac{12 \times \mathrm{MW})-(\% \text { by vol SW } \times \text { ASGsw })-(0.84 \times \% \text { by vol oil })}{\mathrm{SS}}\right.$
Step 5 Average specific gravity of solids (ASG)
$\mathrm{ASG}=\frac{(12 \times \mathrm{MW})-\% \text { by vol water }-\% \text { by vol oil }}{\% \text { by vol solids }}$
Step 6 Percent by volume low gravity solids (LGS)
LGS $=\%$ by volume solids $\times(4.2-$ ASG $)$
1.6

Step 7 Percent by volume barite
Barite, \% by vol = \% by vol solids - \% by vol LGS
Step 8 Pounds per barrel barite
Barite, $\mathrm{lb} / \mathrm{bbl}=\%$ by vol barite $\times 14.71$
Step 9 Bentonite determination
If cation exchange capacity (CEC)/methytene blue test (MBT) of shale and mud are KNOWN:
a) Bentonite, lb/bbl:

Bentonite, $\mathrm{lb} / \mathrm{bbl}=1 \div(1-(\mathrm{S} \div 65) \times(\mathrm{M}-9 \times(\mathrm{S} \div 65)) \times \%$ by vol LGS
Where
$\mathrm{S}=\mathrm{CEC}$ of shale
$\mathrm{M}=\mathrm{CEC}$ of mud
b) Bentonite, \% by volume:

Bent, \% by vol = bentonite, $\mathrm{lb} / \mathrm{bbl} \div 9.1$
If the cation exchange capacity (CEC)/methylene blue (MBT) of SHALE is UNKNOWN:
a) Bentonite, $\%$ by volume $=\frac{\mathrm{M}-\% \text { by volume } \mathrm{LGS}}{8}$
where $\mathrm{M}=\mathrm{CEC}$ of mud
b) Bentonite, $\mathrm{lb} / \mathrm{bbl}=$ bentonite, $\%$ by vol x 9.1

Step 10 Drilled solids, \% by volume
Drilled solids, \% by vol = LGS, \% by vol - bentonite, \% by vol
Step 11 Drilled solids, lb/bbl
Drilled solids, $\mathrm{lb} / \mathrm{bbl}=$ drilled solids, $\%$ by vol x 9.1
Example: Mud weight $=16.0 \mathrm{ppg} \quad$ Chlorides $\quad=73,000 \mathrm{ppm}$
CEC of $\mathrm{mud}=30 \mathrm{lb} / \mathrm{bbl}$
Retort Analysis:

CEC of shale $=7 \mathrm{lb} / \mathrm{bbl}$
water $\quad=57.0 \%$ by volume
oil $\quad=7.5 \%$ by volume
solids $\quad=35.5 \%$ by volume

1. Percent by volume saltwater (SW)
$\mathrm{SW}=\left[\left(5.88 \times 10^{-8}\right)(73,000)^{1.2}+1\right] \times 57$
SW $=\left[\left(5.88^{-8} \times 685468.39\right)+1\right] \times 57$
SW $=(0.0403055+1) \times 57$
SW $=59.2974$ percent by volume
2. Percent by volume suspended solids (SS)
$\mathrm{SS}=100-7.5-59.2974$
$\mathrm{SS}=33.2026$ percent by volume
3. Average specific gravity of saltwater (ASGsw)

$$
\begin{aligned}
& \text { ASGsw }=\left[(73,000)^{0.95}-\left(1.94 \times 10^{-6}\right)\right]+1 \\
& \text { ASGsw }=\left(41,701.984 \times 1.94^{-6}\right)+1 \\
& \text { ASGsw }=0.0809018+\mathrm{I} \\
& \text { ASGsw }=1.0809
\end{aligned}
$$

4. Average specific gravity of solids (ASG)

$$
\mathrm{ASO}=\frac{(12 \times 16)-(59.2974 \times 1.0809)-(0.84 \times 7.5)}{33.2026}
$$

$$
\mathrm{ASG}=\frac{121.60544}{33.2026}
$$

ASG $=3.6625$
5. Because a high chloride example is being used, Step 5 is omitted.
6. Percent by volume low gravity solids (LGS)

LGS $=\frac{33.2026 \times(4.2-3.6625)}{1.6}$
LGS $=11.154$ percent by volume
7. Percent by volume barite

Barite, \% by volume $=33.2026-11.154$
Barite $=22.0486$ \% by volume
8. Barite, $\mathrm{lb} / \mathrm{bbl}$

Barite, $\mathrm{lb} / \mathrm{bbl}=22.0486 \times 14.71$
Barite $\quad=324.3349 \mathrm{lb} / \mathrm{bbl}$
9. Bentonite determination
a) $\mathrm{lb} / \mathrm{bbl}=1 \div(1-(7 \div 65) \times(30-9 \times(7 \div 65)) \times 11.154$
$\mathrm{lb} / \mathrm{bbl}=1.1206897 \times 2.2615385 \times 11.154$
Bent $=28.26965 \mathrm{lb} / \mathrm{bbl}$
b) Bentonite, \% by volume

Bent, \% by vol $=28.2696 \div 9.1$
Bent $\quad=3.10655 \%$ by vol
10. Drilled solids, percent by volume

Drilled solids, $\%$ by vol $=11.154-3.10655$
Drilled solids $\quad=8.047 \%$ by vol
11. Drilled solids, pounds per barrel

Drilled solids, $\mathrm{lb} / \mathrm{bbl}=8.047 \times 9.1$
Drilled solids $\quad=73.2277 \mathrm{lb} / \mathrm{bbl}$

Maximum recommended solids fractions (SF)

$\mathrm{SF}=(2.917 \mathrm{x} \mathrm{MW})-14.17$

Maximum recommended low gravity solids (LGS)

LGS $=((\mathrm{SF} \div 100)-[0.3125 \times((\mathrm{MW} \div 8.33)-1)]) \times 200$
where $\mathrm{SF}=$ maximum recommended solids fractions, \% by vol
LGS $=$ maximum recommended low gravity solids, $\%$ by vol
MW = mud weight, ppg
Example: \quad Mud weight $=14.0 \mathrm{ppg}$
Determine: \quad Maximum recommended solids, $\%$ by volume
Low gravity solids fraction, \% by volume
Maximum recommended solids fractions (SF), \% by volume:

$$
\begin{aligned}
& \mathrm{SF}=(2.917 \times 14.0)-14.17 \\
& \mathrm{SF}=40.838-14.17 \\
& \mathrm{SF}=26.67 \% \text { by volume }
\end{aligned}
$$

Low gravity solids (LOS), \% by volume:
LGS $=((26.67 \div 100)-[0.3125 \times((14.0 \div 8.33)-1)]) \times 200$
LGS $=0.2667-(0.3125 \times 0.6807) \times 200$
LGS $=(0.2667-0.2127) \times 200$
LGS $=0.054 \times 200$
LGS $=10.8 \%$ by volume

7. Dilution of Mud System

```
\(\mathrm{Vwm}=\mathrm{Vm}(\) Fct -Fcop\()\)
    Fcop - Fca
```

where $\mathrm{Vwm}=$ barrels of dilution water or mud required
$\mathrm{Vm}=$ barrels of mud in circulating system
Fct = percent low gravity solids in system
Fcop = percent total optimum low gravity solids desired
Fca $=$ percent low gravity solids (bentonite and/or chemicals added)

Example: 1000 bbl of mud in system. Total LOS $=6 \%$. Reduce solids to 4%. Dilute with water:

$$
\mathrm{Vwm}=\frac{1000(6-4)}{4}
$$

$\mathrm{Vwm}=\frac{2000}{4}$
$\mathrm{Vwm}=500 \mathrm{bbl}$
If dilution is done with a 2% bentonite slurry, the total would be:
$\mathrm{Vwm}=\frac{1000(6-4)}{4-2}$
$\mathrm{Vwm}=\frac{2000}{2}$
$\mathrm{Vwm}=1000 \mathrm{bbl}$

8. Displacement - Barrels of Water/Slurry Required

$\mathrm{Vwm}=\frac{\mathrm{Vm}(\text { Fct }- \text { Fcop })}{\text { Fct }-\mathrm{Fca}}$
where $\quad \mathrm{Vwm}=$ barrels of mud to be jetted and water or slurry to be added to maintain constant circulating volume:

Example: $\quad 1000 \mathrm{bbl}$ in mud system. Total LGS $=6 \%$. Reduce solids to 4% :
$\mathrm{Vwm}=\frac{1000(6-4)}{6}$
$\mathrm{Vwm}=\frac{2000}{6}$
$\mathrm{Vwm}=333 \mathrm{bbl}$
If displacement is done by adding 2% bentonite slurry, the total volume would be:

$$
\mathrm{Vwm}=\frac{1000(6-4)}{6-2}
$$

$\mathrm{Vwm}=\frac{2000}{4}$
$\mathrm{Vwm}=500 \mathrm{bbl}$

9. Evaluation of Hydrocyclone

Determine the mass of solids (for an unweighted mud) and the volume of water discarded by one cone of a hydrocyclone (desander or desilter):

Volume fraction of solids (SF): SF = MW - 8.22
13.37

Mass rate of solids (MS):

$$
\mathrm{MS}=19,530 \times \mathrm{SF} \times \frac{\mathrm{V}}{\mathrm{~T}}
$$

Volume rate of water $(\mathrm{WR}) \quad \mathrm{WR}=900(1-\mathrm{SF}) \frac{\mathrm{V}}{\mathrm{T}}$
where \quad SF fraction percentage of solids
MW = average density of discarded mud, ppg
MS = mass rate of solids removed by one cone of a hydrocyclone, $\mathrm{lb} / \mathrm{hr}$
$\mathrm{V}=$ volume of slurry sample collected, quarts
T = time to collect slurry sample, seconds
$\mathrm{WR}=$ volume of water ejected by one cone of a hydrocyclone, gal/hr
Example: Average weight of slurry sample collected $=16.0$ ppg Sample collected in 45 seconds
Volume of slurry sample collected 2 quarts
a) Volume fraction of solids: $\quad \mathrm{SF}=\frac{16.0-8.33}{13.37}$

$$
\mathrm{SF}=0.5737
$$

b) Mass rate of solids: $\quad \mathrm{MS}=19,530 \times 0.5737 \times \frac{2}{45}$.

$$
\begin{aligned}
& \mathrm{MS}=11,204.36 \times 0.0444 \\
& \mathrm{MS}=497.97 \mathrm{lb} / \mathrm{hr}
\end{aligned}
$$

c) Volume rate of water:

$$
\mathrm{WR}=900(1-0.5737)-\frac{2}{45} .
$$

$$
\begin{aligned}
& \mathrm{WR}=900 \times 0.4263 \times 0.0444 \\
& \mathrm{WR}=17.0 \mathrm{gal} / \mathrm{hr}
\end{aligned}
$$

10.
 Evaluation of Centrifuge

a) Underflow mud volume:
$\mathrm{QU}=\frac{[\mathrm{QM} \mathrm{x}(\mathrm{MW}-\mathrm{PO})]-[\mathrm{QW} \times(\mathrm{PO}-\mathrm{PW})]}{\mathrm{PU}-\mathrm{PO}}$
b) Fraction of old mud in Underflow:

$$
\mathrm{FU}=\frac{35-\mathrm{PU}}{35-\mathrm{MW}+(\mathrm{QW} \div \mathrm{QM}) \times(35-\mathrm{PW})}
$$

c) Mass rate of clay:

$$
\mathrm{QC}=\frac{\mathrm{CC} \mathrm{x} \mathrm{[QM}-(\mathrm{QU} \mathrm{x} \mathrm{FU})]}{42}
$$

d) Mass rate of additives:

$$
\mathrm{QC}=\frac{\mathrm{CD} \times[\mathrm{QM}-(\mathrm{QU} \mathrm{x} \mathrm{FU})]}{42}
$$

e) Water flow rate into mixing pit:

$$
\mathrm{QP}=\frac{[\mathrm{QM} \mathrm{x}(35-\mathrm{MW})]-[\mathrm{QU} \mathrm{x}(35-\mathrm{PU})]-(0.6129 \times \mathrm{QC})-(0.6129 \times \mathrm{QD})}{35-\mathrm{PW}}
$$

f) Mass rate for API barite:

$$
\mathrm{QB}=\mathrm{QM}-\mathrm{QU}-\mathrm{QP}-\frac{\mathrm{QC}}{21.7}-\frac{\mathrm{QD}}{21.7} \times 35
$$

where :

$$
\begin{array}{lc}
\text { MW = mud density into centrifuge, ppg } & \text { PU = Underflow mud density, ppg } \\
\text { QM }=\text { mud volume into centrifuge, gal } / \mathrm{m} & \mathrm{PW}=\text { dilution water density, ppg } \\
\text { QW }=\text { dilution water volume, gal } / \mathrm{mm} & \mathrm{PO}=\text { overflow mud density, ppg } \\
\mathrm{CD}=\text { additive content in mud, } \mathrm{lb} / \mathrm{bbl} & \mathrm{CC}=\text { clay content in mud, } \mathrm{lb} / \mathrm{bbl} \\
\mathrm{QU}=\text { Underflow mud volume, gal } / \mathrm{mm} & \mathrm{QC}=\text { mass rate of clay, } \mathrm{lb} / \mathrm{mm} \\
\mathrm{FU}=\text { fraction of old mud in Underflow } & \mathrm{QD}=\text { mass rate of additives, } \mathrm{lb} / \mathrm{mm} \\
\mathrm{QB}=\text { mass rate of API barite, } \mathrm{lb} / \mathrm{mm} & \\
\mathrm{QP}=\text { water flow rate into mixing pit, gal } / \mathrm{mm}
\end{array}
$$

Example: Mud density into centrifuge $(\mathrm{MW})=16.2 \mathrm{ppg}$
Mud volume into centrifuge $(\mathrm{QM})=16.5 \mathrm{gal} / \mathrm{mm}$
Dilution water density (PW) $\quad=8.34 \mathrm{ppg}$
Dilution water volume $(\mathrm{QW}) \quad=10.5 \mathrm{gal} / \mathrm{mm}$
Underfiow mud density (PU) $=23.4 \mathrm{ppg}$
Overflow mud density (P0) $\quad=9.3 \mathrm{ppg}$
Clay content of mud (CC) $\quad=22.5 \mathrm{lb} / \mathrm{bbl}$
Additive content of mud (CD) $=6 \mathrm{lb} / \mathrm{bbl}$
Determine: Flow rate of Underflow
Volume fraction of old mud in the Underflow
Mass rate of clay into mixing pit
Mass rate of additives into mixing pit
Water flow rate into mixing pit
Mass rate of API barite into mixing pit
a) Underfiow mud volume, $\mathrm{gal} / \mathrm{mm}$:

$\mathrm{QU}=\underline{113.85-10.08}$
14.1
$\mathrm{QU}=7.4 \mathrm{gal} / \mathrm{mm}$
b) Volume fraction of old mud in the Underflow:
$\mathrm{FU}=\frac{35-23.4}{35-16.2+[(10.5 \div 16.5) \times(35-8.34)]}$.
$\mathrm{FU}=$ $\frac{11.6}{18.8+(0.63636 \times 26.66)}$.
$\mathrm{FU}=0.324 \%$
c) Mass rate of clay into mixing pit, lb/mm:
$\mathrm{QC}=\frac{22.5 \times[16.5-(7.4 \times 0.324)]}{42}$
$\mathrm{QC}=\frac{22.5 \times 14.1}{42}$
$\mathrm{QC}=7.55 \mathrm{lb} / \mathrm{min}$
d) Mass rate of additives into mixing pit, $\mathrm{lb} / \mathrm{mm}$:
$\mathrm{QD}=\frac{6 \times[16.5-(7.4 \times 0.324)]}{42}$
$\mathrm{QD}=\frac{6 \times 14.1}{42}$
$\mathrm{QD}=2.01 \mathrm{lb} / \mathrm{mm}$
e) Water flow into mixing pit, gal/mm:

```
\(\mathrm{QP}=[16.5 \times(35-16.2)]-[7.4 \times(35-23.4)]-(0.6129 \times 7.55)-(0.6129 \times 2)\)
    (35-8.34)
\(\mathrm{QP}=\frac{310.2-85.84-4.627-1.226}{26.66}\)
\(\mathrm{QP}=\frac{218.507}{26.66}\)
\(\mathrm{QP}=8.20 \mathrm{gal} / \mathrm{mm}\)
```

f) Mass rate of API barite into mixing pit, $\mathrm{lb} / \mathrm{mm}$:

$$
\begin{aligned}
& \mathrm{QB}=16.5-7.4-8.20-(7.55 \div 21.7)-(2.01 \div 21.7) \times 35 \\
& \mathrm{QB}=16.5-7.4-8.20-0.348-0.0926 \times 35 \\
& \mathrm{QB}=0.4594 \times 35 \\
& \mathrm{QB}=16.079 \mathrm{lb} / \mathrm{mm}
\end{aligned}
$$

References

Chenevert, Martin E., and Reuven Hollo, TI-59 Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1981.
Crammer Jr., John L. Basic Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1982.
Manual of Drilling Fluids Technology, Baroid Division, N.L. Petroleum Services, Houston, Texas, 1979.
Mud Facts Engineering Handbook, Milchem Incorporated, Houston, Texas, 1984.

CHAPTER FOUR

PRESSURE CONTROL

1. Kill Sheets and Related Calculations

Normal Kill Sheet

Pre-recorded Data

```
Original mud weight (OMW)__ ppg
Measured depth (MD)
``` \(\qquad\)
``` ft
Kill rate pressure (KRP)
``` \(\qquad\)
``` psi @
``` \(\qquad\)
``` spm
Kill rate pressure (KRP)
``` \(\qquad\)
``` psi @
``` \(\qquad\)
``` spm
```


Drill String Volume

Drill pipe capacity
\qquad bbl/ft x \qquad length, $\mathrm{ft}=$ \qquad bbl

Drill pipe capacity
\qquad bbl/ft x \qquad length, $\mathrm{ft}=$ \qquad bbl

Drill collar capacity
\qquad bbl/ft x \qquad length, $\mathrm{ft}=$ \qquad bbl

Total drill string volume \qquad bbl

Annular Volume

Drill collar/open hole
Capacity \qquad bbl/ft x \qquad length, $\mathrm{ft}=$ \qquad bbl

Drill pipe/open hole
Capacity \qquad bbl/ft x \qquad length, $\mathrm{ft}=$ \qquad bbl

Drill pipe/casing
Capacity \qquad bbl/ft x \qquad length, $\mathrm{ft}=$ \qquad bbl

Total barrels in open hole

 bblTotal annular volume \qquad bbl

Pump Data

Pump output \qquad bbl/stk @ \qquad \% efficiency

Surface to bit strokes:
Drill string volume \qquad bbl \div \qquad pump output, bbl/stk = \qquad stk

Bit to casing shoe strokes:
Open hole volume \qquad bbl \div \qquad pump output, bbl/stk = \qquad stk

Bit to surface strokes:
Annulus volume \qquad bbl \div \qquad
\qquad pump output, bbl/stk = \qquad stk

Maximum allowable shut-in casing pressure:

Leak-off test \qquad psi, using ppg mud weight @ casing setting depth of \qquad TVD

Kick data

SIDPP \qquad psi
SICP psi
Pit gain \qquad bbl
True vertical depth \qquad ft

Calculations

Kill Weight Mud (KWM)

$=$ SIDPP \qquad $\mathrm{psi} \div 0.052 \div$ TVD \qquad $\mathrm{ft}+\mathrm{OMW}$ \qquad ppg $=$ \qquad ppg

Initial Circulating Pressure (ICP)

= SIDPP \qquad $\mathrm{psi}+\mathrm{KRP}$ \qquad psi $=$ \qquad psi

Final Circulating Pressure (FCP)

= KWM \qquad ppg x KRP \qquad psi \div OMW \qquad ppg = \qquad psi

Psi/stroke

ICP psi - FCP \qquad $\mathrm{psi} \div$ strokes to bit \qquad $=$ \qquad psi/stk

Pressure Chart

Strokes	Pressure
0	
0	

Example: Use the following data and fill out a kill sheet:

Calculations

Drill string volume:

Drill pipe capacity	$0.01776 \mathrm{bbl} / \mathrm{ft} \mathrm{x} 9925 \mathrm{ft}$	$=176.27 \mathrm{bbl}$
HWDP capacity	$0.00883 \mathrm{bbl} / \mathrm{ft} \times \quad 240 \mathrm{ft}$	$=2.12 \mathrm{bbl}$
Drill collar capacity	$0.0087 \mathrm{bbl} / \mathrm{ft} \times \quad 360 \mathrm{ft}$	$=3.13 \mathrm{bbl}$
Total drill string volume		$=\mathbf{1 8 1 . 5} \mathbf{~ b b l}$

Annular volume:

Drill collar/open hole	$0.0836 \mathrm{bbl} / \mathrm{ft} \times 360 \mathrm{ft}$	$=30.10 \mathrm{bbl}$
Drill pipe/open hole	$0.1215 \mathrm{bbl} / \mathrm{ft} \times 6165 \mathrm{ft}$	$=749.05 \mathrm{bbl}$
Drill pipe/casing	$0.1303 \mathrm{bbl} / \mathrm{ft} \times 4000 \mathrm{ft}$	$=521.20 \mathrm{bbl}$
Total annular volume		$=\mathbf{1 3 0 0 . 3 5} \mathbf{~ b b l}$

Strokes to bit: Drill string volume $181.5 \mathrm{bbl} \div 0.136 \mathrm{bbl} / \mathrm{stk}$
Strokes to bit $=\mathbf{1 3 3 5} \mathbf{~ s t k}$
Bit to casing strokes: Open hole volume $=779.15 \mathrm{bbl} \div 0.136 \mathrm{bbl} / \mathrm{stk}$
Bit to casing strokes $=\mathbf{5 7 2 9}$ stk
Bit to surface strokes: Annular volume $=1300.35 \mathrm{bbl} 0.136 \mathrm{bbl} / \mathrm{stk}$
Bit to surface strokes $=9561$ stk
$\begin{array}{lll}\text { Kill weight mud (KWM) } & 480 \mathrm{psi} \div 0.052 \div 10,000 \mathrm{ft}+9.6 \mathrm{ppg} & =10.5 \mathrm{ppg} \\ \text { Initial circulating pressure (ICP) } & 480 \mathrm{psi}+1000 \mathrm{psi} & =1480 \mathrm{psi} \\ \text { Final circulating pressure (FCP) } & 10.5 \mathrm{ppg} \times 1000 \mathrm{psi} \div 9.6 \mathrm{ppg} & =1094 \mathrm{psi}\end{array}$

Pressure Chart

Strokes to bit $=1335 \div 10=133.5$
Therefore, strokes will increase by 133.5 per line:

Pressure Chart

	Strokes	Pressure
133.5 rounded up	0	
$133.5+133.5=$	134	
$+133.5=$	267	
+ $133.5=$	401	
+ $133.5=$	534	
+ $133.5=$	668	
$+133.5=$	801	
+ $133.5=$	935	
+ $133.5=$	1068	
$+133.5=$	1202	
$+133.5=$	1335	

Pressure

ICP (1480) psi - FCP (1094) $\div 10=38.6$ psi
Therefore, the pressure will decrease by 38.6 psi per line.

Pressure Chart

$\begin{array}{r} 1480-38.6= \\ -38.6= \end{array}$	Strokes	Pressure
	0	1480
		1441
- $38.6=$		1403
$-38.6=$		1364
- $38.6=$		1326
- $38.6=$		1287
$-38.6=$		1248
- $38.6=$		1210
$-38.6=$		1171
-38.6 =		1133
$-38.6=$		1094

Trip Margin (TM)

$\mathrm{TM}=$ Yield point $\div 11.7(\mathrm{Dh}$, in. -Dp, in. $)$
Example: Yield point $=10 \mathrm{lb} / 100 \mathrm{sq} \mathrm{ft} ; \quad \mathrm{Dh}=8.5 \mathrm{in} . ; \quad \mathrm{Dp}=4.5 \mathrm{in}$.
$\mathrm{TM}=10 \div 11.7(8.5-4.5)$
$\mathrm{TM}=0.2 \mathrm{ppg}$

Determine Psi/stk

$$
\mathrm{psi} / \mathrm{stk}=\frac{\mathrm{ICP}-\mathrm{FCP}}{\text { strokes to bit }}
$$

Example: Using the kill sheet just completed, adjust the pressure chart to read in increments that are easy to read on pressure gauges. Example: 50 psi:

Data: Initial circulating pressure $=1480 \mathrm{psi}$
Final circulating pressure $=1094 \mathrm{psi}$
Strokes to bit

$$
=1335 \mathrm{psi}
$$

$$
\mathrm{psi} / \text { stk }=\frac{1480-1094}{1335}
$$

psi/stk $=0.2891$
The pressure side of the chart will be as follows:

Pressure Chart

Strokes	Pressure
0	1480
	1450
	1400
	1350
	1300
	1250
	1200
	1150
	1100
	1094

Adjust the strokes as necessary.
For line 2: How many strokes will be required to decrease the pressure from 1480 psi to 1450 psi ?
$1480 \mathrm{psi}-1450 \mathrm{psi}=30 \mathrm{psi}$
$30 \mathrm{psi} \div 0.2891 \mathrm{psi} / \mathrm{stk}=104$ strokes
For lines 3 to 7 : How many strokes will be required to decrease the pressure by 50 psi increments?

Therefore, the new pressure chart will be as follows:

Pressure Chart

	Strokes	Pressure
	0	1480
$\mathbf{1 0 4}+\mathbf{1 7 3}=$	104	1450
$\mathbf{+ 1 7 3}=$	277	1400
$\mathbf{+ 1 7 3}=$	450	1350
$\mathbf{+ 1 7 3}=$	623	1300
$\mathbf{+ 1 7 3}=$	796	1250
$+\mathbf{1 7 3}=$	969	1200
$\mathbf{+ 1 7 3}=$	1142	1150
	1315	1100

Kill Sheet With a Tapered String

psi @ \qquad strokes $=\mathrm{ICP}-[(\mathrm{DPL} \div \mathrm{DSL}) \mathrm{x}(\mathrm{ICP}-\mathrm{FCP})]$

Note: Whenever a kick is taken with a tapered drill string in the hole, interim pressures should be calculated for a) the length of large drill pipe (DPL) and b) the length of large drill pipe plus the length of small drill pipe.

Example: Drill pipe 1: $5.0 \mathrm{in} . \quad 19.5 \mathrm{lb} / \mathrm{ft} \quad$ Capacity $=0.01776 \mathrm{bbl} / \mathrm{ft}$ Length $=7000 \mathrm{ft}$
Drill pipe 2: 3-1/2 in. $13.3 \mathrm{lb} / \mathrm{ft} \quad$ Capacity $=0.0074 \mathrm{bbl} / \mathrm{ft}$ Length $=6000 \mathrm{ft}$
Drill collars: $41 / 2 \mathrm{in}$. OD x 1-1/2 in. ID Capacity $=0.0022 \mathrm{bbl} / \mathrm{ft}$ Length $=2000 \mathrm{ft}$
Step 1 Determine strokes:

$$
\begin{aligned}
7000 \mathrm{ft} \times 0.01776 \mathrm{bbl} / \mathrm{ft} \div 0.117 \mathrm{bbl} / \mathrm{stk} & =1063 \\
6000 \mathrm{ft} \times 0.00742 \mathrm{bbl} / \mathrm{ft} \div 0.117 \mathrm{bbl} / \mathrm{stk} & =381 \\
2000 \mathrm{ft} \times 0.0022 \mathrm{bbl} / \mathrm{ft} \div 0.117 \mathrm{bbl} / \mathrm{stk} & =38 \\
\text { Total strokes } & =1482
\end{aligned}
$$

Data from kill sheet

Initial drill pipe circulating pressure $($ ICP $)=1780 \mathrm{psi}$
Final drill pipe circulating pressure $(\mathrm{FCP})=1067 \mathrm{psi}$
Step 2 Determine interim pressure for the 5.0 in. drill pipe at 1063 strokes:
psi @ 1063 strokes $=1780-[(7000 \div 15,000) \times(1780-1067)]$

$$
\begin{aligned}
& =1780-(0.4666 \times 713) \\
& =1780-333 \\
& =1447 \mathrm{psi}
\end{aligned}
$$

Step 3 Determine interim pressure for 5.0 in. plus 3-1/2 in. drill pipe $(1063+381)=1444$ strokes:
psi @ 1444 strokes $=1780-[(11,300 \div 15,000) \times(1780-1067)]$
$=1780-(0.86666 \times 713)$
$=1780-618$
$=1162 \mathrm{psi}$
Step 4 Plot data on graph paper

Figure 4-1. Data from kill sheet.
Note. After pumping 1062 strokes, if a straight line would have been plotted, the well would have been underbalanced by 178 psi .

Kill Sheet for a Highly Deviated Well

Whenever a kick is taken in a highly deviated well, the circulating pressure can be excessive when the kill weight mud gets to the kick-off point (KOP). If the pressure is excessive, the pressure schedule should be divided into two sections: 1) from surface to KOP, and 2) from KOP to TD. The following calculations are used:

Determine strokes from surface to KOP:
Strokes $=$ drill pipe capacity, bbl!ft x measured depth to KOP, ft x pump output, bbl/stk

Determine strokes from KOP to TD:
Strokes $=$ drill string capacity, $\mathrm{bbl} / \mathrm{ft} \times$ measured depth to $\mathrm{TD}, \mathrm{ft} \times$ pump output, bbl/stk
Kill weight mud: $\quad \mathrm{KWM}=\mathrm{SIDPP} \div 0.052 \div \mathrm{TVD}+\mathrm{OMW}$
Initial circulating pressure: \quad ICP $=$ SIDPP + KRP
Final circulating pressure: \quad FCP KWM \times KRP $\div 0 \mathrm{MW}$
Hydrostatic pressure increase from surface to KOP:
$\mathrm{psi}=(\mathrm{KWM}-\mathrm{OMW}) \times 0.052 \times$ TVD @ KOP

Friction pressure increase to KOP:
$\mathrm{FP}=(\mathrm{FCP}-\mathrm{KRP}) \mathrm{x} \mathrm{MD} @ \mathrm{KOP} \div \mathrm{MD} @ \mathrm{TD}$
Circulating pressure when KWM gets to KOP:
$\mathrm{CP} \sim \mathrm{KOP}=\mathrm{ICP}-\mathrm{HP}$ increase to KOP + friction pressure
increase, psi
Note: At this point, compare this circulating pressure to the value obtained when using a regular kill sheet.

Example: | Original mud weight (OMW) | $=9.6 \mathrm{ppg}$ |
| :--- | :--- |
| Measured depth (MD) | $=15,000 \mathrm{ft}$ |
| Measured depth @ KOP | $=5000 \mathrm{ft}$ |
| True vertical depth @ KOP | $=5000 \mathrm{ft}$ |
| Kill rate pressure (KRP) @ 30 spm | $=600 \mathrm{psi}$ |
| Pump output | $=0.136 \mathrm{bbl} / \mathrm{stk}$ |
| Drill pipe capacity | $=0.01776 \mathrm{bbl} / \mathrm{ft}$ |
| Shut-in drill pipe pressure (SIDPP) | $=800 \mathrm{psi}$ |
| True vertical depth (TVD) | $=10,000 \mathrm{ft}$ |

Solution:
Strokes from surface to KOP:
Strokes $=0.01776 \mathrm{bbl} / \mathrm{ft} \times 5000 \mathrm{ft} \div 0.136 \mathrm{bbl} / \mathrm{stk}$
Strokes $=653$

Strokes from KOP to TD:
Strokes $=0.01776 \mathrm{bbl} / \mathrm{ft} \times 10,000 \mathrm{ft}+0.136 \mathrm{bbl} /$ stk
Strokes $=1306$

Total strokes from surface to bit:
Surface to bit strokes $=653+1306$
Surface to bit strokes $=1959$
Kill weight mud (KWM):
$K W M=800 \mathrm{psi} 0.052+10,000 \mathrm{ft}+9.6 \mathrm{ppg}$
$K W M=11.1 \mathrm{ppg}$
Initial circulating pressure (ICP):
$\mathrm{ICP}=800 \mathrm{psi}+600 \mathrm{psi}$
$\mathrm{ICP}=1400 \mathrm{psi}$

Final circulating pressure (FCP):
$\mathrm{FCP}=11.1 \mathrm{ppg} \times 600 \mathrm{psi} \pm 9.6 \mathrm{ppg}$
$\mathrm{FCP}=694 \mathrm{psi}$
Hydrostatic pressure increase from surface to KOP:
$\mathrm{HPi}=(11.1-9.6) \times 0.052 \times 5000$
$\mathrm{HPi}=390 \mathrm{psi}$
Friction pressure increase to TD:
$\mathrm{FP}=(694-600) \times 5000 \div 15,000$
$\mathrm{FP}=31 \mathrm{psi}$
Circulating pressure when KWM gets to KOP:
$C P=1400-390+31$
$\mathrm{CP}=1041 \mathrm{psi}$
Compare this circulating pressure to the value obtained when using a regular kill sheet:
$\mathrm{psi} / \mathrm{stk}=1400-694+1959$
$\mathrm{psi} /$ stk $=0.36$
$0.36 \mathrm{psi} /$ stk x 653 strokes $=235 \mathrm{psi}$
$1400-235=1165 \mathrm{psi}$
Using a regular kill sheet, the circulating drill pipe pressure would be 1165 psi. The adjusted pressure chart would have 1041 psi on the drill pipe gauge. This represents 124 psi difference in pressure, which would also be observed on the annulus (casing) side. It is recommended that if the difference in pressure at the KOP is 100 psi or greater, then the adjusted pressure chart should be used to minimise the chances of losing circulation.

The chart below graphically illustrates the difference:

Figure 4-2. Adjusted pressure chart.

2.
 Pre-recorded Information

Maximum Anticipated Surface Pressure

Two methods are commonly used to determine maximum anticipated surface pressure:

Method 1: Use when assuming the maximum formation pressure is from TD:

Step 1 Determine maximum formation pressure (FPmax):
FP max $=($ maximum mud wt to be used, $\mathrm{ppg}+$ safety factor, ppg$) \times 0.052 \times$ (total depth, ft$)$
Step 2 Assuming 100\% of the mud is blown out of the hole, determine the hydrostatic pressure in the wellbore:

Note: 70% to 80% of mud being blown out is sometimes used instead of 100%.
HPgas $=$ gas gradient, $\mathrm{psi} / \mathrm{ft} \mathrm{x}$ total depth, ft
Step 3 Determine maximum anticipated surface pressure (MASP):
MASP $=$ FPmax - HPgas

Example: | Proposed total depth | $=12,000 \mathrm{ft}$ |
| :--- | :--- |
| Maximum mud weight to be used in drilling well | $=12.0 \mathrm{ppg}$ |
| | $=4.0 \mathrm{ppg}$ |
| Safety factor | $=0.12 \mathrm{psi} / \mathrm{ft}$ |

Assume that 100% of mud is blown out of well.
Step 1 Determine fracture pressure, psi:
FPmax $=(12.0+4.0) \times 0.052 \times 12,000 \mathrm{ft}$
FPmax $=9984 \mathrm{psi}$

Step 2

$$
\begin{aligned}
& \text { HPgas }=0.12 \times 12,000 \mathrm{ft} \\
& \text { HPgas }=1440 \mathrm{psi}
\end{aligned}
$$

Step 3

MASP $=9984-1440$
MASP $=8544 \mathrm{psi}$

Method 2: Use when assuming the maximum pressure in the wellbore is attained when the formation at the shoe fractures:

Step 1

Fracture, $\mathrm{psi}=($ estimated fracture + safety factor, ppg$) \times 0.052 \times$ (casing shoe TVD, ft) pressure (gradient, ppg)

Note: A safety factor is added to ensure the formation fractures before BOP pressure rating is exceeded.

Step 2 Determine the hydrostatic pressure of gas in the wellbore (HPgas):
HPgas $=$ gas gradient, psi/ft x casing shoe TVD, ft
Step 3 Determine the maximum anticipated surface pressure (MASP), psi:

Example: | Proposed casing setting depth | $=4000 \mathrm{ft}$ |
| ---: | :--- |
| Estimated fracture gradient | $=14.2 \mathrm{ppg}$ |
| Safety factor | $=1.0 \mathrm{ppg}$ |
| Gas gradient | $=0.12 \mathrm{psi} / \mathrm{ft}$ |

Assume 100% of mud is blown out of the hole.
Step 1 Fracture pressure, $\mathrm{psi}=(14.2+1.0) \times 0.052 \times 4000 \mathrm{ft}$

$$
\text { Fracture pressure, } \mathrm{psi}=3162 \mathrm{psi}
$$

Step 2 HPgas $=0.12 \times 4000 \mathrm{ft}$ HPgas $=480 \mathrm{psi}$

Step 3 MASP $=3162-480$
MASP $=2682 \mathrm{psi}$

Sizing Diverter Lines

Determine diverter line inside diameter, in., equal to the area between the inside diameter of the casing and the outside diameter of drill pipe in use:

Diverter line ID, in. $=\sim \mathrm{Ib} \sim \mathrm{bp} 2$
Example: Casing-13-3/8 in. - J-55 - 61 IbIft ID $=12.515 \mathrm{in}$.
Drill pipe - $19.5 \mathrm{lb} / \mathrm{ft} \mathrm{OD}=5.0 \mathrm{in}$.
Determine the diverter line inside diameter that will equal the area between the casing and drill pipe:

Diverter line ID, in. = sq. root $\left(12.515^{2}-5.0^{2}\right)$
Diverter line ID = 11.47 in.

Formation Pressure Tests

Two methods of testing: • Equivalent mud weight test

- Leak-off test

Precautions to be undertaken before testing:

1. Circulate and condition the mud to ensure the mud weight is consistent throughout the system.
2. Change the pressure gauge (if possible) to a smaller increment gauge so a more accurate measure can be determined.
3. Shut-in the well.
4. Begin pumping at a very slow rate - $1 / 4$ to $1 / 2 \mathrm{bbl} / \mathrm{min}$.
5. Monitor pressure, time, and barrels pumped.
6. Some operators may have different procedures in running this test, others may include:
a. Increasing the pressure by 100 psi increments, waiting for a few minutes, then increasing by another 100 psi , and so on, until either the equivalent mud weight is achieved or until Leak-off is achieved.
b. Some operators prefer not pumping against a closed system. They prefer to circulate through the choke and increase back pressure by slowly closing the choke. In this method, the annular pressure loss should be calculated and added to the test pressure results.

Testing to an equivalent mud weight:

1) This test is used primarily on development wells where the maximum mud weight that will be used to drill the next interval is known.
2) Determine the equivalent test mud weight, ppg, Two methods are normally used.

Method 1: Add a value to the maximum mud weight that is needed to drill the interval.
Example: Maximum mud weight necessary to drill the next interval $=11.5 \mathrm{ppg}$ plus safety factor $=1.0 \mathrm{ppg}$

Equivalent test mud weight, ppg $=($ maximum mud weight, ppg $)+($ safety factor, ppg $)$
Equivalent test mud weight $\quad=11.5 \mathrm{ppg}+1.0 \mathrm{ppg}$
Equivalent test mud weight $\quad=12.5 \mathrm{ppg}$
Method 2: Subtract a value from the estimated fracture gradient for the depth of the casing shoe.

Equivalent test mud weight $=($ estimated fracture gradient, ppg $)-($ safety factor $)$
Example: \quad Estimated formation fracture gradient $=14.2$ ppg. Safety factor $=1.0 \mathrm{ppg}$
Equivalent test mud weight $=14.2 \mathrm{ppg}-1.0 \mathrm{ppg}$
Determine surface pressure to be used:
Surface pressure, $\mathrm{psi}=\underset{\text { (mud wt, ppg }}{(\text { equiv. Test }}-\underset{\text { in use, ppg) }}{\text { mud } w t, ~}) \times 0.052 \times($ casing seat, TVD ft)
Example: Mud weight $=9.2 \mathrm{ppg}$
Casing shoe TVD $\quad=4000 \mathrm{ft}$
Equivalent test mud weight $=13.2 \mathrm{ppg}$
Solution: \quad Surface pressure $=(13.2-9.2) \times 0.052 \times 4000 \mathrm{ft}$ Surface pressure $=832 \mathrm{psi}$

Testing to leak-off test:

1) This test is used primarily on wildcat or exploratory wells or where the actual fracture is not known.
2) Determine the estimated fracture gradient from a "Fracture Gradient Chart."
3) Determine the estimated leak-off pressure.

Estimated leak-off pressure $=\underset{(\text { gradient }}{(\text { estimated }}$ fracture $-\underset{\text { in }}{\operatorname{muse}} \underset{\mathrm{ppg})}{ }) \times 0.052 \times($ casing shoe $)$

Example: Mud weight	$=9.6 \mathrm{ppg} \quad$ Casing shoe TVD $=4000 \mathrm{ft}$
Estimated fracture gradient	$=14.4 \mathrm{ppg}$

Solution: \quad Estimated leak-off pressure $=(14.4-9.6) \times 0.052 \times 4000 \mathrm{ft}$ Estimated leak-off pressure $=4.8 \times 0.052 \times 4000$ Estimated leak-off pressure $=998$ psi

Maximum Allowable Mud Weight From Leak-off Test Data

Max allowable $=($ leak off pressure, psi$) \div 0.052 \div($ casing shoe $)+($ mud wt in use, ppg$)$ mud weight, ppg (TVD, ft)

Example: Determine the maximum allowable mud weight, ppg, using the following data:
Leak-off pressure $=1040 \mathrm{psi}$
Casing shoe TVD $=4000 \mathrm{ft}$
Mud weight in use $=10.0 \mathrm{ppg}$
Max allowable mud weight, $\mathrm{ppg}=1040+0.052-\sim-4000+10.0$
Max allowable mud weight, ppg = 15.0 ppg

Maximum Allowable Shut-in Casing Pressure (MASLCP) also called maximum allowable shut-in annular pressure (MASP):

```
MASICP \(=(\) maximum allowable - mud wt in use, ppg\() \times 0.052 \times(\) casing shoe TVD, ft\()\)
    (mud wt, ppg
    )
```

Example: Determine the maximum allowable shut-in casing pressure using the following data:
Maximum allowable mud weight $=15.0 \mathrm{ppg}$
Mud weight in use $\quad=12.2 \mathrm{ppg}$
Casing shoe TVD $\quad=4000 \mathrm{ft}$
MASICP $=(15.0-12.2) \times 0.052 \times 4000 \mathrm{ft}$
MASICP $=582 \mathrm{psi}$

Kick Tolerance Factor (KTF)

$\mathrm{KTF}=$ Casing shoe TVD, ft$) \times($ maximum allowable mud wt, ppg —mud wt in use, ppg) well depth

Example: Determine the kick tolerance factor (KTF) using the following data:
Mud weight in use $=10.0 \mathrm{ppg}$
Casing shoe TVD $=4000 \mathrm{ft}$
Well depth TVD $\quad=10,000 \mathrm{ft}$
Maximum allowable mud weight $($ from leak-off test data $)=14.2 \mathrm{ppg}$

```
\(\mathrm{KTF}=(4000 \mathrm{ft} \div 10,000 \mathrm{ft}) \times(14.2 \mathrm{ppg}-10.0 \mathrm{ppg})\)
\(\mathrm{KTF}=1.68 \mathrm{ppg}\)
```


Maximum Surface Pressure From Kick Tolerance Data

Maximum surface pressure $=$ kick tolerance factor, $\mathrm{ppg} \times 0.052 \times$ TYD, ft
Example: Determine the maximum surface pressure, psi, using the following data:
Maximum surface pressure $=1.68 \mathrm{ppg} \times 0.052 \times 10,000 \mathrm{ft}$
Maximum surface pressure $=874 \mathrm{psi}$

Maximum Formation Pressure (FP) That Can be Controlled When Shutting-in a Well

Maximum FP, psi $=($ kick tolerance factor, $\mathrm{ppg}+$ mud wt in use, ppg$) \times 0.052 \times \mathrm{TYD}, \mathrm{ft}$
Example: Determine the maximum formation pressure (FP) that can be controlled when shutting-in a well using the following data:

Data: Kick tolerance factor $=1.68 \mathrm{ppg} \quad$ Mud weight $=10.0 \mathrm{ppg}$
True vertical depth $=10,000 \mathrm{ft}$
Maximum FP, psi $=(1.68 \mathrm{ppg}+10.0 \mathrm{ppg}) \times 0.052 \times 10,000 \mathrm{ft}$
Maximum FP $=6074 \mathrm{psi}$

Maximum Influx Height Possible to Equal Maximum Allowable Shut-in Casing Pressure (MASICP)

Influx height $=$ MASICP, $\mathrm{psi} \div($ gradient of mud wt in use, $\mathrm{psi} / \mathrm{ft}$ — influx gradient, psi/ft $)$
Example: Determine the influx height, ft , necessary to equal the maximum allowable shut-in casing pressure (MASICP) using the following data:

Data: \quad Maximum allowable shut-in casing pressure $=874 \mathrm{psi}$
Mud gradient ($10.0 \mathrm{ppg} \times 0.052$) $\quad=0.52 \mathrm{psi} / \mathrm{ft}$
Gradient of influx $\quad=0.12 \mathrm{psi} / \mathrm{ft}$
Influx height $=874 \mathrm{psi} \div(0.52 \mathrm{psi} / \mathrm{ft}-0.12 \mathrm{psi} / \mathrm{fl})$
Influx height $=2185 \mathrm{ft}$

Maximum Influx, Barrels to Equal Maximum Allowable Shut-in Casing Pressure (MASICP)

Example: Maximum influx height to equal MASICP (from above example) $=2185 \mathrm{ft}$ Annular capacity - drill collars/open hole (12-1/4 in. x 8.0 in .) $=0.0826 \mathrm{bbl} / \mathrm{ft}$ Annular capacity - drill pipe/open hole (12-1/4 in. x 5.0 in .) $=0.1215 \mathrm{bbl} / \mathrm{ft}$ Drill collar length $\quad=500 \mathrm{ft}$

Step 1 Determine the number of barrels opposite drill collars:

```
Barrels = 0.0836 bbl/ft x 500 ft
Barrels =41.8
```

Step 2 Determine the number of barrels opposite drill pipe:
Influx height, ft , opposite drill pipe: $\mathrm{ft}=2185 \mathrm{ft}-500 \mathrm{ft}$ $\mathrm{ft}=1685$

Barrels opposite drill pipe: \quad Barrels $=1685 \mathrm{ft} \times 0.1215 \mathrm{bbl} / \mathrm{ft}$
Barrels $=204.7$

Step 3 Determine maximum influx, bbl, to equal maximum allowable shut-in casing pressure:

Maximum influx $=41.8 \mathrm{bbl}+204.7 \mathrm{bbl}$
Maximum influx $=246.5 \mathrm{bbl}$

Adjusting Maximum Allowable Shut-in Casing Pressure For an Increase in Mud Weight

MASICP $=\mathrm{P}_{\mathrm{L}}-\left[\mathrm{D} \mathrm{x}\left(\right.\right.$ mud wt $\left.\left._{2}-\operatorname{mud} \mathrm{wt}_{1}\right)\right] 0.052$
where MASICP = maximum allowable shut-in casing (annulus) pressure, psi
$\mathrm{P}_{\mathrm{L}} \quad=$ leak-off pressure, psi
$\mathrm{D} \quad=$ true vertical depth to casing shoe, ft
Mud wt $_{2}=$ new mud wt, ppg
Mud wt ${ }_{1}=$ original mud wt, ppg
Example: Leak-off pressure at casing setting depth (TVD) of 4000 ft was 1040 psi with 10.0 ppg in use. Determine the maximum allowable shut-in casing pressure with a mud weight of 12.5 ppg :

MASICP $=1040 \mathrm{psi}-[4000 \times(12.5-10.0) 0.052]$
MASICP $=1040 \mathrm{psi}-520$
MASICP $=520 \mathrm{psi}$

Kick Analysis

Formation Pressure (FP) With the Well Shut-in on a Kick

FP, psi $=$ SIDPP, psi $+($ mud wt, ppg x $0.052 \times$ TVD, ft)
Example: Determine the formation pressure using the following data:
Shut-in drill pipe pressure $=500 \mathrm{psi} \quad$ Mud weight in drill pipe $=9.6 \mathrm{ppg}$
True vertical depth $\quad=10,000 \mathrm{ft}$
FP, psi $=500 \mathrm{psi}+(9.6 \mathrm{ppg} \times 0.052 \times 10,000 \mathrm{ft})$
$\mathrm{FP}, \mathrm{psi}=500 \mathrm{psi}+4992 \mathrm{psi}$
$\mathrm{FP}=5492 \mathrm{psi}$

Bottom hole Pressure (BHP) With the Well Shut-in on a Kick

BHP, psi $=$ SIDPP, psi $+($ mud wt, ppg x $0.052 \times$ TVD, ft)
Example: Determine the bottom hole pressure (BHP) with the well shut-in on a kick:

Shut-in drill pipe pressure $=500 \mathrm{psi} \quad$ Mud weight in drill pipe $=9.6 \mathrm{ppg}$
True vertical depth $\quad=10,000 \mathrm{ft}$
BHP, psi $=500 \mathrm{psi}+(9.6 \mathrm{ppg} \times 0.052 \times 10,000 \mathrm{ft})$
BHP, psi $=500 \mathrm{psi}+4992$ psi
BHP $=5492 \mathrm{psi}$

Shut-in Drill Pipe Pressure (SIDPP)

SIDPP, psi $=$ formation pressure, $\mathrm{psi}-($ mud wt, $\mathrm{ppg} \times 0.052 \times$ TVD, ft$)$
Example: Determine the shut-in drill pipe pressure using the following data:

Formation pressure	$=12,480 \mathrm{psi} \quad$ Mud weight in drill pipe $=.15 .0 \mathrm{ppg}$
True vertical depth	$=15,000 \mathrm{ft}$

SIDPP, $\mathrm{psi}=12,480 \mathrm{psi}-(15.0 \mathrm{ppg} \times 0.052 \times 15,000 \mathrm{ft})$
SIDPP, psi $=12,480 \mathrm{psi}-11,700 \mathrm{psi}$
SIDPP $=780 \mathrm{psi}$

Shut-in Casing Pressure (SICP)

SICP $=($ formation pressure, psi$)-(\mathrm{HP}$ of mud in annulus, $\mathrm{psi}+\mathrm{HP}$ of influx in annulus, psi$)$
Example: Determine the shut-in casing pressure using the following data:
Formation pressure $\quad=12,480 \mathrm{psi} \quad$ Mud weight in annulus $=15.0 \mathrm{ppg}$
Feet of mud in annulus $=14,600 \mathrm{ft} \quad$ Influx gradient $\quad=0.12 \mathrm{psi} / \mathrm{ft}$
Feet of influx in annulus $=400 \mathrm{ft}$
SICP, $\mathrm{psi}=12,480-[(15.0 \times 0.052 \times 14,600)+(0.12 \times 400)]$
SICP, psi $=12,480-11,388+48$
SICP $=1044 \mathrm{psi}$

Height, Fl, of Influx

Height of influx, $\mathrm{ft}=$ pit gain, $\mathrm{bbl} \div$ annular capacity, $\mathrm{bbl} / \mathrm{ft}$
Example 1: Determine the height, ft , of the influx using the following data:
Pit gain $=20 \mathrm{bbl}$ Annular capacity $-\mathrm{DC} / \mathrm{OH}=0.02914 \mathrm{bbl} / \mathrm{ft}$
$(\mathrm{Dh}=8.5$ in. $-\mathrm{Dp}=6.5)$
Height of influx, $\mathrm{ft}=20 \mathrm{bbl} \div 0.02914 \mathrm{bbl} / \mathrm{ft}$
Height of influx $=686 \mathrm{ft}$
Example 2: Determine the height, ft , of the influx using the following data:

Pit gain	$=20 \mathrm{bbl}$	Hole size $=8.5 \mathrm{in}$.
Drill collar OD	$=6.5 \mathrm{in}$.	Drill collar length $=450 \mathrm{ft}$
Drill pipe OD	$=5.0 \mathrm{in}$.	

Determine annular capacity, $\mathrm{bbl} / \mathrm{ft}$, for $\mathrm{DC} / \mathrm{OH}$:
Annular capacity, bbl$/ \mathrm{ft}=\frac{8.5^{2}-6.5^{2}}{1029.4}$
Annular capacity $\quad=0.02914 \mathrm{bbl} / \mathrm{ft}$
Determine the number of barrels opposite the drill collars:
Barrels $=$ length of collars x annular capacity
Barrels $=450 \mathrm{ft} \mathrm{x} 0.02914 \mathrm{bbl} / \mathrm{ft}$
Barrels $=13.1$
Determine annular capacity, bbl/ft, opposite drill pipe:
Annular capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{8.5^{2}-5.0^{2}}{1029.4}$
Annular capacity $\quad=0.0459 \mathrm{bbl} / \mathrm{ft}$

Determine barrels of influx opposite drill pipe:
Barrels = pit gain, bbl - barrels opposite drill collars
Barrels $=20 \mathrm{bbl}-13.1 \mathrm{bbl}$
Barrels $=6.9$
Determine height of influx opposite drill pipe:
Height, $\mathrm{ft}=6.9 \mathrm{bbl}-:-0.0459 \mathrm{bbl} / \mathrm{ft}$
Height $=150 \mathrm{ft}$
Determine the total height of the influx:
Height, $\mathrm{ft}=450 \mathrm{ft}+150 \mathrm{ft}$
Height $=600 \mathrm{ft}$

Estimated Type of Influx

Influx weight, ppg $=$ mud wt, ppg $-(($ SICP - SIDPP $) \div$ height of influx, ft $x 0.052)$
then: $1-3 \mathrm{ppg}=$ gas kick
$4-6 \mathrm{ppg}=$ oil kick or combination
$7-9 \mathrm{ppg}=$ saltwater kick
Example: Determine the type of the influx using the following data:
Shut-in casing pressure $=1044 \mathrm{psi} \quad$ Height of influx $=400 \mathrm{ft}$
Shut-in drill pipe pressure $=780 \mathrm{psi} \quad$ Mud weight $=15.0 \mathrm{ppg}$
Influx weight, ppg $=15.0 \mathrm{ppg}-((1044-780) \div 400 \times 0.052)$
Influx weight, ppg $=15.0 \mathrm{ppg}-\underline{264}$

Influx weight $\quad=2.31 \mathrm{ppg}$
Therefore, the influx is probably "gas."

Gas Migration in a Shut-in Well

Estimating the rate of gas migration, $\mathrm{ft} / \mathrm{hr}$:
$\mathrm{Vg}=\mathrm{I} 2 \mathrm{e}^{(-0.37)(\mathrm{mud} w \mathrm{t} . \mathrm{ppg})}$
$\mathrm{Vg}=$ rate of gas migration, $\mathrm{ft} / \mathrm{hr}$
Example: Determine the estimated rate of gas migration using a mud weight of 11.0 ppg :
$\mathrm{Vg}=12 \mathrm{e}^{(-0.37)(11.0 \mathrm{ppg})}$
$\mathrm{Vg}=12 \mathrm{e}^{(-4.07)}$
$\mathrm{Vg}=0.205 \mathrm{ft} / \mathrm{sec}$
$\mathrm{Vg}=0.205 \mathrm{ft} / \mathrm{sec} \times 60 \mathrm{sec} / \mathrm{min}$
$\mathrm{Vg}=12.3 \mathrm{ft} / \mathrm{min} \times 60 \mathrm{~min} / \mathrm{hr}$
$\mathrm{Vg}=738 \mathrm{ft} / \mathrm{hr}$

Determining the actual rate of gas migration after a well has been shut-in on a kick:
Rate of gas migration, $\mathrm{ft} / \mathrm{hr}=\underline{\text { increase in casing pressure, } \mathrm{psi} / \mathrm{hr}}$
pressure gradient of mud weight in use, psi/ft
Example: Determine the rate of gas migration with the following data:
Stabilised shut-in casing pressure $=500 \mathrm{psi} \quad$ SICP after one hour $=700 \mathrm{psi}$
Pressure gradient for 12.0 ppg mud $=0.624 \mathrm{psi} / \mathrm{ft}$ Mud weight $=12.0 \mathrm{ppg}$
Rate of gas migration, $\mathrm{ft} / \mathrm{hr}=200 \mathrm{psi} / \mathrm{hr} \div 0.624 \mathrm{psi} / \mathrm{ft}$
Rate of gas migration $\quad=320.5 \mathrm{ft} / \mathrm{hr}$

Hydrostatic Pressure Decrease at TD Caused by Gas Cut Mud

Method 1:

HP decrease, $\mathrm{psi}=\underline{100(\text { weight of uncut mud, } \mathrm{ppg} \text { - weight of gas cut mud, ppg) }) ~(2)}$ weight of gas cut mud, ppg

Example: Determine the hydrostatic pressure decrease mud using the following data:
Weight of uncut mud $=18.0 \mathrm{ppg} \quad$ Weight of gas cut mud $=9.0 \mathrm{ppg}$
HP decrease, $\mathrm{psi}=\frac{100 \times(18.0 \mathrm{ppg}-9.0 \mathrm{ppg})}{9.0 \mathrm{ppg}}$
HP Decrease $\quad=100 \mathrm{psi}$
Method 2: $\quad P=(M G \div C) V$
where $\mathrm{P}=$ reduction in bottomhole pressure, $\mathrm{psi} \quad \mathrm{MG}=$ mud gradient, $\mathrm{psi} / \mathrm{ft}$
C = annular volume, bbl/ft
$\mathrm{V}=$ pit gain, bbl
Example: $\quad \mathrm{MG}=0.624 \mathrm{psi} / \mathrm{ft}$
C $=0.0459 \mathrm{bbl} / \mathrm{ft}(\mathrm{Dh}=8.5 \mathrm{in} . ; \mathrm{Dp}=5.0 \mathrm{in}$.
$\mathrm{V}=20 \mathrm{bbl}$
Solution: $\quad \mathrm{P}=(0.624 \mathrm{psi} / \mathrm{ft} \div 0.0459 \mathrm{bbl} / \mathrm{ft}) 20$
$\mathrm{P}=13.59 \times 20$
$\mathrm{P}=271.9 \mathrm{psi}$

Maximum Surface Pressure From a Gas Kick in a Water Base Mud

MSPgk $=0.2 \sqrt{\mathrm{PxVxKWM} \div \mathrm{C}}$
where MSPgk = maximum surface pressure resulting from a gas kick in a water base mud
P = formation pressure, psi
$\mathrm{V} \quad=$ pit gain, bbl
$K W M=$ kill weight mud, ppg
C = annular capacity, bbl/ft

Example: $\quad \mathrm{P} \quad=12,480 \mathrm{psi} \quad \mathrm{V}=20 \mathrm{bbl}$

$$
\mathrm{KWM}=16.0 \mathrm{ppg} \quad \mathrm{C}=0.0505 \mathrm{bbl} / \mathrm{ft}(\mathrm{Dh}=8.5 \mathrm{in} . \times \mathrm{Dp}=4.5 \mathrm{in} .)
$$

Solution: $\operatorname{MSPgk}=0.2 \sqrt{12,480 \times 20 \times 16.0}$ 0.0505

MSPgk $=0.2 \sqrt{79081188}$
MSPgk $=0.2 \times 8892.76$
MSPgk $=1779 \mathrm{psi}$

Maximum Pit Gain From Gas Kick in a Water Base Mud

$$
\text { MPGgk }=4 \frac{\sqrt{\mathrm{PxVxC}}}{\mathrm{KWM}}
$$

where MPGgk = maximum pit gain resulting from a gas kick in a water base mud
P = formation pressure, psi
$\mathrm{V} \quad=$ original pit gain, bbl
C = annular capacity, bbl/ft
KWM = kill weight mud, ppg
Example: $\quad \mathrm{P}=12,480 \mathrm{psi} \quad \mathrm{V}=20 \mathrm{bbl} \quad \mathrm{C}=0.0505 \mathrm{bbl} / \mathrm{ft}(8.5 \mathrm{in} . \mathrm{x} 4.5 \mathrm{in}$.
Solution: MPGgk $=4 \sqrt{\frac{12,480 \times 20 \times 0.0505}{16.0}}$

$$
\begin{aligned}
& \text { MPGgk }=4 \sqrt{787.8} \\
& \text { MPGgk }=4 \times 28.06 \\
& \text { MPGgk }=112.3 \mathrm{bbl}
\end{aligned}
$$

Maximum Pressures When Circulating Out a Kick (Moore Equations)

The following equations will be used:

1. Determine formation pressure, $\mathrm{psi}: \mathbf{P b}=\mathbf{S I D P}+(\operatorname{mud} \mathbf{w t}, \mathbf{p p g} \times \mathbf{0 . 0 5 2} \times \mathbf{T V D}, \mathbf{f t})$
2. Determine the height of the influx, $\mathrm{ft}: \mathbf{h i}=\mathbf{p i t}$ gain, $\mathbf{b b l} \div$ annular capacity, $\mathbf{b b l} / \mathbf{f t}$
3. Determine pressure exerted by the influx, $\mathrm{psi}: \mathbf{P i}=\mathbf{P b}-[\mathbf{P m}(\mathbf{D}-\mathbf{X})+\mathbf{S I C P}]$
4. Determine gradient of influx, $\mathrm{psi} / \mathrm{ft}: \quad \mathbf{C i}=\mathbf{P i} \div \mathbf{h i}$
5. Determine Temperature, ${ }^{\circ} \mathrm{R}$, at depth of interest: $\mathbf{T d i}=70^{\circ} \mathbf{F}+\left(\mathbf{0 . 0 1 2}{ }^{\circ} \mathbf{F} / \mathbf{f t} . \mathbf{x} \mathbf{D i}\right)+\mathbf{4 6 0}$
6. Determine A for unweighted mud: $\quad \mathbf{A}=\mathbf{P b}-[\mathbf{P m}(\mathbf{D}-\mathbf{X})-\mathbf{P i}]$
7. Determine pressure at depth of interest: $\mathbf{P d i}=\underset{2}{\mathbf{A}}+\underset{\mathbf{4}}{\left({\underset{\mathbf{A}}{ }}^{2}+\frac{\mathbf{p m ~ P b ~ Z d i ~ T}}{}{ }^{\circ} \mathbf{R d i} \mathbf{~ h i}\right)^{1 / 2}} \underset{\mathbf{Z b} \text { Tb }}{ }$
8. Determine kill weight mud, ppg: KWM, ppg = SIDPP $\div \mathbf{0 . 0 5 2} \div \mathbf{T V D}, \mathbf{f t}+\mathbf{0 M W}, \mathbf{p p g}$
9. Determine gradient of kill weight mud, psi/ft: $\mathbf{p K W M}=\mathbf{K W M}, \mathbf{p p g} \mathbf{x} \mathbf{0 . 0 5 2}$
10. Determine FEET that drill string volume will occupy in the annulus:

Di $=$ drill string vol, bbl \div annular capacity, bbl/ft

11. Determine A for weighted mud: $\mathbf{A}=\mathbf{P b}-[\mathbf{p m}(\mathbf{D}-\mathbf{X})-\mathbf{P i}]+[\mathbf{D i}(\mathbf{p K W M}-\mathbf{p m})\}$

Example: Assumed conditions:

Well depth	$=10,000 \mathrm{ft}$	Hole size	$=8.5 \mathrm{in}$.
Surface casing	$=9-5 / 8 \mathrm{in} . @ 2500 \mathrm{ft}$	Casing ID$=8.921 \mathrm{in}$.	
Fracture gradient @ 2500 ft	$=0.73 \mathrm{psi} / \mathrm{ft}(14.04 \mathrm{ppg})$	Casing ID capacity $=0.077 \mathrm{bbl} / \mathrm{ft}$	
Drill pipe $=4.5 \mathrm{in}$. $-16.6 \mathrm{lb} / \mathrm{ft}$	Drill collar OD Drill collar OD length	$=625 \mathrm{ft}$	Mud weight = 9.6 ppg

Mud volumes:
$8-1 / 2$ in. hole $\quad=0.07 \mathrm{bbl} / \mathrm{ft} \quad 8.921 \mathrm{in}$. casing $\mathrm{x} 4-1 / 2 \mathrm{in}$. drill pipe $=0.057 \mathrm{bbl} / \mathrm{ft}$
Drill pipe capacity $=0.014 \mathrm{bbl} / \mathrm{ft} \quad 8-1 / 2 \mathrm{in}$. hole $\times 6-1 / 4 \mathrm{in}$. drill collars $=0.032 \mathrm{bbl} / \mathrm{ft}$
Drill collar capacity $=0.007 \mathrm{bbl} / \mathrm{ft} \quad 8-1 / 2 \mathrm{in}$. hole $\mathrm{x} 4-1 / 2$ in. drill pipe $=0.05 \mathrm{bbl} / \mathrm{ft}$
Super compressibility factor $(Z)=1.0$
The well kicks and the following information is recorded
SIDP $=260 \mathrm{psi}$
SICP $=500 \mathrm{psi}$
pit gain $=20 \mathrm{bbl}$
Determine the following:
Maximum pressure at shoe with drillers method
Maximum pressure at surface with drillers method
Maximum pressure at shoe with wait and weight method
Maximum pressure at surface with wait and weight method
Determine maximum pressure at shoe with drillers method:

1. Determine formation pressure:

$$
\begin{aligned}
\mathrm{Pb} & =260 \mathrm{psi}+(9.6 \mathrm{ppg} \times 0.052 \times 10,000 \mathrm{ft}) \\
\mathrm{Pb} & =5252 \mathrm{psi}
\end{aligned}
$$

2. Determine height of influx at TD:

$$
\begin{aligned}
& \mathrm{hi}=20 \mathrm{bbl} \div 0.032 \mathrm{bbl} / \mathrm{ft} \\
& \mathrm{hi}=625 \mathrm{ft}
\end{aligned}
$$

3. Determine pressure exerted by influx at TD:

$$
\begin{aligned}
& \mathrm{Pi}=5252 \mathrm{psi}-[0.4992 \mathrm{psi} / \mathrm{ft}(10,000-625)+500] \\
& \mathrm{Pi}=5252 \mathrm{psi}-[4680 \mathrm{psi}+500] \\
& \mathrm{Pi}=5252 \mathrm{psi}-5180 \mathrm{psi} \\
& \mathrm{Pi}=72 \mathrm{psi}
\end{aligned}
$$

4. Determine gradient of influx at TD:

$$
\begin{aligned}
& \mathrm{Ci}=72 \mathrm{psi} \div 625 \mathrm{ft} \\
& \mathrm{Ci}=0.1152 \mathrm{psi} / \mathrm{ft}
\end{aligned}
$$

5. Determine height and pressure of influx around drill pipe:

$$
\begin{aligned}
& \mathrm{h}=20 \mathrm{bbl} \div 0.05 \mathrm{bbl} / \mathrm{ft} \\
& \mathrm{~h}=400 \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Pi} & =0.1152 \mathrm{psi} / \mathrm{ft} \times 400 \mathrm{ft} \\
\mathrm{Pi} & =46 \mathrm{psi}
\end{aligned}
$$

6. Determine $\mathrm{T}^{\circ} \mathrm{R}$ at TD and at shoe:

$$
\begin{aligned}
\mathrm{T}^{\circ} \mathrm{R} @ 10,000 \mathrm{ft} & =70+(0.012 \times 10,000)+460 \\
& =70+120+460
\end{aligned}
$$

$\mathrm{T}^{\circ} \mathrm{R}$ @ 10,000ft = 650
$\mathrm{T}^{\circ} \mathrm{R} @ 2500 \mathrm{ft}=70+(0.012 \times 2500)+460$

$$
=70+30+460
$$

$\mathrm{T}^{\circ} \mathrm{R} @ 2500 \mathrm{ft}=560$

7. Determine A:

```
\(\mathrm{A}=5252 \mathrm{psi}-[0.4992(10,000-2500)+46]\)
\(\mathrm{A}=5252 \mathrm{psi}-(3744-46)\)
\(\mathrm{A}=1462 \mathrm{psi}\)
```

8. Determine maximum pressure at shoe with drillers method:
```
\(\mathrm{P}_{2500}=\frac{1462}{2}+\left[\frac{1462^{2}}{4} \frac{(0.4992)(5252)(1)(560)(400)]^{1 / 2}}{(1)(650)}\right.\)
    \(=731+(534361+903512) 12\)
    \(=731+1199\)
\(\mathrm{P}_{2500}=1930 \mathrm{psi}\)
```

Determine maximum pressure at surface with drillers method:

1. Determine A:
```
\(\mathrm{A}=5252-[0.4992(10,000)+46]\)
\(A=5252-(4992+46)\)
\(\mathrm{A}=214 \mathrm{psi}\)
```

2. Determine maximum pressure at surface with drillers method:

$$
\begin{aligned}
\text { Ps } & =\frac{214}{2}+\left[\frac{214^{2}}{4}\left(\frac{0.4992)(5252)(1)(530)(400)}{650}\right]^{1 / 2}\right. \\
& =107+(11449+855109)^{1 / 2} \\
& =107+931 \\
\text { Ps } & =1038 \mathrm{psi}
\end{aligned}
$$

Determine maximum pressure at shoe with wait and weight method:

1. Determine kill weight mud:

KWM, ppg $=260 \mathrm{psi} \div 0.052 \div 10,000 \mathrm{ft}+9.6 \mathrm{ppg}$
$\mathrm{KWM}, \mathrm{ppg}=10.1 \mathrm{ppg}$
2. Determine gradient (pm), psi/ft for KWM:
$\mathrm{pm}=10.1 \mathrm{ppg} \times 0.052$
$\mathrm{pm}=0.5252 \mathrm{psi} / \mathrm{ft}$
3. Determine internal volume of drill string:

Drill pipe vol $=0.014 \mathrm{bbl} / \mathrm{ft} \times 9375 \mathrm{ft}=131.25 \mathrm{bbl}$
Drill collar vol $=0.007 \mathrm{bbl} / \mathrm{ft} \times 625 \mathrm{ft}=4.375 \mathrm{bbl}$
Total drill string volume $\quad=135.625 \mathrm{bbl}$
4. Determine FEET drill string volume occupies in annulus:
$\mathrm{Di}=135.625 \mathrm{bbl} \div 0.05 \mathrm{bbl} / \mathrm{ft}$
Di $=2712.5$
5. Determine A:
$\mathrm{A}=5252-[0.5252(10,000-2500)-46)+(2715.2(0.5252-0.4992)]$
$A=5252-(3939-46)+70.6$
$\mathrm{A}=1337.5$
6. Determine maximum pressure at shoe with wait and weight method:

$$
\begin{aligned}
\mathrm{P}_{2500} & =\frac{1337.5}{2}+\left[\frac{1337.5^{2}}{4}+\frac{(0.5252)(5252)(1)(560)(400)}{(1)(650)}\right]^{1 / 2} \\
& =668.75+(447226+950569.98)^{1 / 2} \\
& =668.75+1182.28 \\
& =1851 \mathrm{psi}
\end{aligned}
$$

Determine maximum pressure at surface with wait and weight method:

1. Determine A:
$\mathrm{A}=5252-[0.5252(10,000)-46]+[2712.5(0.5252-0.4992)]$
$A=5252-(5252-46)+70.525$
$\mathrm{A}=24.5$
2. Determine maximum pressure at surface with wait and weight method:
$\left.\mathrm{Ps}=\frac{12.25}{2}+\frac{\left[24.5^{2}\right.}{4}+\frac{(0.5252)(5252)(\mathrm{l})(560)(400)}{(\mathrm{fl}(650)}\right]^{1 / 2}$
```
Ps \(=12.25+(150.0625+95069.98)^{1 / 2}\)
Ps \(=12.25+975.049\)
\(\mathrm{Ps}=987 \mathrm{psi}\)
```


Nomenclature:

A $\quad=$ pressure at top of gas bubble, psi
$\mathrm{Ci} \quad=$ gradient of influx, $\mathrm{psi} / \mathrm{ft}$
D $\quad=$ total depth, ft
Di $\quad=$ feet in annulus occupied by drill string volume
MW = mud weight, ppg
Pdi $\quad=$ pressure at depth of interest, psi
$\mathrm{Pi} \quad=$ pressure exerted by influx, psi
$\mathrm{pm} \quad=$ pressure gradient of mud weight in use, ppg
psihi $\quad=$ height of influx, ft
$\mathrm{Pb} \quad=$ formation pressure, psi
pKWM = pressure gradient of kill weight mud, ppg
Ps $\quad=$ pressure at surface, psi
SIDP $\quad=$ shut-in drill pipe pressure, psi
SICP, = shut-in casing pressure,
$\mathrm{T}^{\circ} \mathrm{F}=$ temperature, degrees Fahrenheit, at depth of interest
$\mathrm{T}^{\circ} \mathrm{R} \quad=$ temperature, degrees Rankine, at depth of interest
$\mathrm{X} \quad=$ depth of interest, ft
$\mathrm{Zb} \quad=$ gas supercompressibility factor TD
Zdi $\quad=$ gas supercompressibility factor at depth of interest

Gas Flow Into the Wellbore

Flow rate into the wellbore increases as wellbore depth through a gas sand increases:
$\mathrm{Q}=0.007 \times \mathrm{md} \times \mathrm{Dp} \times \mathrm{L} \div \mathrm{U} \times \ln (\mathrm{Re} \mathrm{Rw}) 1,440$
where $\mathrm{Q}=$ flow rate, $\mathrm{bbl} / \mathrm{min}$
md = permeability, millidarcys
$\mathrm{Dp}=$ pressure differential, $\mathrm{psi} \quad \mathrm{L}=$ length of section open to wellbore, ft
$\mathrm{U}=$ viscosity of intruding gas, centipoise $\mathrm{Re}=$ radius of drainage, ft
$\mathrm{Rw}=$ radius of wellbore, ft

Example: $\mathrm{md}=200 \mathrm{md} \quad \mathrm{Dp}=624 \mathrm{psi} \quad \mathrm{L}=2 \mathrm{Oft} \quad \mathrm{U}=0.3 \mathrm{cp} \quad \ln (\mathrm{Re} \div \mathrm{Rw})=2,0$
$\mathrm{Q}=0.007 \times 200 \times 624 \times 20 \div 0.3 \times 2.0 \times 1440$
$\mathrm{Q}=20 \mathrm{bbl} / \mathrm{min}$
Therefore: If one minute is required to shut-in the well, a pit gain of ' 20 bbl occurs in addition to the gain incurred while drilling the $20-\mathrm{ft}$ section.

4.

Pressure Analysis

Gas Expansion Equations

Basic gas laws: $\quad \mathrm{P}_{1} \mathrm{~V}_{1} \div \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}, \div \mathrm{T}_{2}$
where $\mathrm{P}_{1}=$ formation pressure, psi
$\mathrm{P}_{2}=$ hydrostatic pressure at the surface or any depth in the wellbore, psi
$\mathrm{V}_{1}=$ original pit gain, bbl
$\mathrm{V}_{2}=$ gas volume at surface or at any depth of interest, bbl
$\mathrm{T}_{1}=$ temperature of formation fluid, degrees Rankine (${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+460$)
$\mathrm{T}_{2}=$ temperature at surface or at any depth of interest, degrees Rankine
Basic gas law plus compressibility factor: $\mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{T}_{1} \mathrm{Z}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}+\mathrm{T}_{2} \mathrm{Z}_{2}$
where $\mathrm{Z}_{1}=$ compressibility factor under pressure in formation, dimensionless
$\mathrm{Z}_{2}=$ compressibility factor at the surface or at any depth of interest, dimensionless
Shortened gas expansion equation: $\quad \mathrm{P}_{5} \mathrm{~V}_{1}=\mathrm{P}, \mathrm{V}_{2}$
where $\mathrm{P}_{1}=$ formation pressure, psi
$\mathrm{P}_{2}=$ hydrostatic pressure plus atmospheric pressure (14.7 psi), psi
$\mathrm{V}_{1}=$ original pit gain, bbl
$\mathrm{V}_{2}=$ gas volume at surface or at any depth of interest, bbl

Hydrostatic Pressure Exerts by Each Barrel of Mud in the Casing

With pipe in the wellbore:
$\mathrm{psi} / \mathrm{bbl}=\frac{1029.4}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}} \times 0.052 \times$ mud wt, ppg
Example: $\mathrm{Dh}-9-5 / 8 \mathrm{in}$, casing $-43.5 \mathrm{lb} / \mathrm{ft}=8.755 \mathrm{in}$. ID $\mathrm{Dp}=5.0 \mathrm{in}$. OD Mud weight $\quad=10.5 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=\frac{1029.4}{8.755^{2}-5.0^{2}} \times 0.052 \times 10.5 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=19.93029 \times 0.052 \times 10.5 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=10.88$
With no pipe in the wellbore:
$\mathrm{psi} / \mathrm{bbl}=\frac{1029.4}{\mathrm{ID}^{2}} \times 0.052 \times$ mud wt ppg

Example: $\mathrm{Dh}-9-5 / 8 \mathrm{in}$. casing $-43.5 \mathrm{lb} / \mathrm{ft}=8.755 \mathrm{in}$. ID Mud weight $=10.5 \mathrm{ppg}$

$$
\begin{aligned}
& \mathrm{psi} / \mathrm{bbl}=\frac{1029.4}{8.755^{2}} \times 0.052 \times 10.5 \mathrm{ppg} \\
& \mathrm{psi} / \mathrm{bbl}=13.429872 \times 0.052 \times 10.5 \mathrm{ppg} \\
& \mathrm{psi} / \mathrm{bbl}=7.33
\end{aligned}
$$

Surface Pressure During Drill Stem Tests

Determine formation pressure:
$\mathrm{psi}=$ formation pressure equivalent mud wt, ppg $\times 0.052 \times \mathrm{TVD}, \mathrm{ft}$
Determine oil hydrostatic pressure:
$\mathrm{psi}=$ oil specific gravity $\times 0.052 \times$ TVD, ft
Determine surface pressure:
Surface pressure, $\mathrm{psi}=$ formation pressure, psi - oil hydrostatic pressure, psi
Example: Oil bearing sand at $12,500 \mathrm{ft}$ with a formation pressure equivalent to 13.5 ppg . If the specific gravity of the oil is 0.5 , what will be the static surface pressure during a drill stem test?

Determine formation pressure, psi:

$$
\begin{aligned}
& \mathrm{FP}, \mathrm{psi}=13.5 \mathrm{ppg} \times 0.052 \times 12,500 \mathrm{ft} \\
& \mathrm{FP} \quad=8775 \mathrm{psi}
\end{aligned}
$$

Determine oil hydrostatic pressure:

$$
\begin{aligned}
& \mathrm{psi}=(0.5 \times 8.33) \times 0.052 \times 12,500 \mathrm{ft} \\
& \mathrm{psi}=2707
\end{aligned}
$$

Determine surface pressure:
Surface pressure, $\mathrm{psi}=8775 \mathrm{psi}-2707 \mathrm{psi}$
Surface pressure $=6068 \mathrm{psi}$

5. Stripping/Snubbing Calculations

Breakover Point Between Stripping and Snubbing

Example: Use the following data to determine the breakover point:
DATA: Mud weight

$$
=12.5 \mathrm{ppg}
$$

Drill collars (6-1/4 in.- 2-13/16 in.) $=83 \mathrm{lb} / \mathrm{ft}$
Length of drill collars $=276 \mathrm{ft}$
Drill pipe
$=5.0 \mathrm{in}$.
Drill pipe weight
$=19.5 \mathrm{lb} / \mathrm{ft}$
Shut-in casing pressure $=2400 \mathrm{psi}$
Buoyancy factor $\quad=0.8092$
Determine the force, lb , created by wellbore pressure on 6-1/4 in. drill collars:
Force, $\mathrm{lb}=(\text { pipe or collar OD, } \mathrm{In})^{2} \times 0.7854 \times$ (wellbore pressure, psi)
Force, $\mathrm{lb}=6.252 \times 0.7854 \times 2400 \mathrm{psi}$
Force $=73,631 \mathrm{lb}$
Determine the weight, lb , of the drill collars:
$\mathrm{Wt}, \mathrm{lb}=$ drill collar weight, $\mathrm{lb} / \mathrm{ft} \times$ drill collar length, $\mathrm{ft} \times$ buoyancy factor
$\mathrm{Wt}, \mathrm{lb}=83 \mathrm{lb} / \mathrm{ft} \times 276 \mathrm{ft} \times 0.8092$
$\mathrm{Wt}, \mathrm{lb}=18,537 \mathrm{lb}$
Additional weight required from drill pipe:
Drill pipe weight, $\mathrm{lb}=$ force created by wellbore pressure, lb - drill collar weight, lb
Drill pipe weight, $\mathrm{lb}=73,631 \mathrm{lb}-18,537 \mathrm{lb}$
Drill pipe weight, $\mathrm{lb}=55,094 \mathrm{lb}$
Length of drill pipe required to reach breakover point:
Drill pipe $=($ required drill pipe weight, lb$) \div($ drill pipe weight, $\mathrm{lb} / \mathrm{ft} \mathrm{x}$ factor buoyancy $)$ length, ft

Drill pipe length, $\mathrm{ft}=55,094 \mathrm{lb} \div(19.5 \mathrm{lb} / \mathrm{ft} x 0.8092)$
Drill pipe length, $\mathrm{ft}=3492 \mathrm{ft}$
Length of drill string to reach breakover point:
Drill string length, $\mathrm{ft}=$ drill collar length, $\mathrm{ft}+$ drill pipe length, ft
Drill string length, $\mathrm{ft}=276 \mathrm{ft}+3492 \mathrm{ft}$
Drill string length $=3768 \mathrm{ft}$

Minimum Surface Pressure Before Stripping is Possible

Minimum surface $=($ weight of one stand of collars, lb$) \div($ area of drill collars, sq in. $)$ pressure, psi

Example: Drill collars - 8.0 in . OD x 3.0 in . ID $=147 \mathrm{lb} / \mathrm{ft}$ Length of one stand 92 ft
Minimum surface pressure, psi $=(147 \mathrm{lb} / \mathrm{ft} \times 92 \mathrm{ft}) \div\left(8^{2} \times 0.7854\right)$
Minimum surface pressure, $\mathrm{psi}=13,524 \div 50.2656 \mathrm{sq}$ in.
Minimum surface pressure $=269 \mathrm{psi}$

Height Gain From Stripping into Influx

Height, $\mathrm{ft}=\frac{\mathrm{L}(\mathrm{Cdp}+\mathrm{Ddp})}{\mathrm{Ca}}$
where $\mathrm{L} \quad=$ length of pipe stripped, ft
Cdp = capacity of drill pipe, drill collars, or tubing, bbl/ft
Ddp = displacement of drill pipe, drill collars or tubing, bbl/ft
$\mathrm{Ca}=$ annular capacity, bbl/ft
Example: If 300 ft of 5.0 in . drill pipe - $19.5 \mathrm{lb} / \mathrm{ft}$ is stripped into an influx in a $12-1 / 4 \mathrm{in}$. hole, determine the height, ft , gained:

DATA: Drill pipe capacity $=0.01776 \mathrm{bbl} / \mathrm{ft} \quad$ Length drill pipe stripped $=300 \mathrm{ft}$ Drill pipe displacement $=0.00755 \mathrm{bbl} / \mathrm{ft} \quad$ Annular capacity $\quad=0.1215 \mathrm{bbl} / \mathrm{ft}$

Solution: \quad Height, $\mathrm{ft}=\frac{300(0.01776+0.00755)}{0.1215}$
Height $=62.5 \mathrm{ft}$

Casing Pressure Increase From Stripping Into Influx

$\mathrm{psi}=($ gain in height, ft$) \times($ gradient of mud, $\mathrm{psi} / \mathrm{ft}-$ gradient of influx, $\mathrm{psi} / \mathrm{ft})$

$\mathrm{psi}=62.5 \mathrm{ft} \mathrm{x}(0.65-0.12)$
$\mathrm{psi}=33 \mathrm{psi}$

Volume of Mud to Bleed to Maintain Constant Bottomhole Pressure with a
 Gas Bubble Rising

With pipe in the hole: \quad Vmud $=\triangle \mathrm{Dp} \times \mathrm{Ca}$.
gradient of mud, $\mathrm{psi} / \mathrm{ft}$
where Vmud = volume of mud, bbl, that must be bled to maintain constant bottomhole pressure with a gas bubble rising.
Dp = incremental pressure steps that the casing pressure will be allowed to increase.
$\mathrm{Ca}=$ annular capacity, bbllft
Example: Casing pressure increase per step $\quad=100 \mathrm{psi}$
Gradient of mud ($13.5 \mathrm{ppg} \times 0.052$) $\quad=0.70 \mathrm{psi} / \mathrm{ft}$
Annular capacity $(\mathrm{Dh}=12-1 / 4 \mathrm{in} . ; \mathrm{Dp}=5.0 \mathrm{in})=.0.1215 \mathrm{bbl} / \mathrm{ft}$
$\mathrm{Vmud}=\frac{100 \mathrm{psix} 0.1215 \mathrm{bbl} / \mathrm{ft}}{0.702 \mathrm{psi} / \mathrm{ft}}$
Vmud $=17.3 \mathrm{bbl}$

With no pipe in hole: \quad Vmud $=\underline{D p} \times \quad \mathrm{Ch}$. gradient of mud, $\mathrm{psi} / \mathrm{ft}$

Example: $\begin{array}{ll}\text { Casing pressure increase per step } & =100 \mathrm{psi} \\ \text { Gradient of mud (13.5 ppg x } 0.052) & =0.702 \mathrm{psi} / \mathrm{ft} \\ \text { Hole capacity }(12-1 / 4 \mathrm{in} .) & =0.1458 \mathrm{bbl} / \mathrm{ft}\end{array}$
$\operatorname{Vmud}=\underline{100 \mathrm{psi} \times 0.1458 \mathrm{bbl} / \mathrm{ft}}$
$0.702 \mathrm{psi} / \mathrm{ft}$
Vmud $=20.77 \mathrm{bbl}$

Maximum Allowable Surface Pressure (MASP) Governed by the Formation

MASP, psi $=\underset{(\operatorname{mud} w t, \mathrm{ppg}}{(\operatorname{maximum}} \underset{\mathrm{ppg}}{\operatorname{mud}} \mathrm{wt}, \mathrm{in}$ use, $) ~ 0.052 \times$ casing shoe TVD, ft
Example: Maximum allowable mud weight $=15.0 \mathrm{ppg}$ (from leak-off test data)
Mud weight $=12.0 \mathrm{ppg}$
Casing seat TVD $=8000 \mathrm{ft}$
MASP, $\mathrm{psi}=(15.0-12.0) \times 0.052 \times 8000$
MASP $=1248 \mathrm{psi}$

Maximum Allowable Surface Pressure (MASP) Governed by Casing Burst Pressure

MASP $=($ casing burst \times safety $)-($ mud wt in - mud wt outside $) \times 0.052 \times$ casing, shoe (pressure, psi factor) (use, ppg casing, ppg TVD ft

Example: Casing - 10-3/4 in. - $51 \mathrm{lb} / \mathrm{ft} \mathrm{N}-80 \quad$ Casing burst pressure $=6070 \mathrm{psi}$
Casing setting depth $\quad=8000 \mathrm{ft}$ Mud weight in use $=12.0 \mathrm{ppg}$
Mud weight behind casing $=9.4 \mathrm{ppg} \quad$ Casing safety factor $=80 \%$
MASP $=(6070 \times 80 \%)-[(12.0-9.4) \times 0.052 \times 8000]$
MASP $=4856-(2.6 \times 0.052 \times 8000)$
MASP $=3774 \mathrm{psi}$

6.

 Subsea Considerations
Casing Pressure Decrease when Bringing Well on Choke

When bringing the well on choke with a subsea stack, the casing pressure (annulus pressure) must be allowed to decrease by the amount of choke line pressure loss (friction pressure):

Reduced casing pressure, $\mathrm{psi}=($ shut-in casing pressure, psi$)$ - (choke line pressure loss, psi)
Example: \quad Shut-in casing (annulus) pressure $(\mathrm{SICP})=800 \mathrm{psi}$
Choke line pressure loss (CLPL) $\quad=300 \mathrm{psi}$
Reduced casing pressure, $\mathrm{psi}=800 \mathrm{psi}-300 \mathrm{psi}$
Reduced casing pressure $=500 \mathrm{psi}$

Pressure Chart for Bringing Well on Choke

Pressure/stroke relationship is not a straight line effect. While bringing the well on choke, to maintain a constant bottomhole pressure, the following chart should be used:

Pressure Chart

Line 1: Reset stroke counter to " 0 " =
Line 2: $1 / 2$ stroke rate $=50 \times 0.5=$
Line 3: $3 / 4$ stroke rate $=50 \times 0.75=$
Line 4: 7/8 stroke rate $=50 \times 0.875=$
Line 5: Kill rate speed =

Strokes	Pressure
0	
25	
38	
44	
50	

Strokes side: \quad Example: \quad kill rate speed $=50 \mathrm{spm}$
Pressure side: Example. Shut-in casing pressure (SICP) $=800 \mathrm{psi}$
Choke line pressure loss $($ CLPL $)=300 \mathrm{psi}$
Divide choke line pressure loss (CLPL) by 4, because there are 4 steps on the chart:

```
psi/line = (CLPL) 300 psi}=75 ps
4
```

Line 1: Shut-in casing pressure, psi =
Line 2: Subtract 75 psi from Line $1=$
Line 3: Subtract 75 psi from Line $2=$
Line 4: Subtract 75 psi from Line $3=$
Line 5: Reduced casing pressure =
Pressure Chart

Strokes	Pressure
	800
	725
	650
	575
	500

Maximum Allowable Mud Weight, ppg, Subsea Stack as Derived from Leak-off Test Data

```
Maximum allowable = (leak-off test )}\div0.052\div(TVD, ft RKB ) + (mud wt in use, ppg
mud weight ppg (pressure, psi) ( to casing shoe)
```

Example: Leak-off test pressure $=800 \mathrm{psi}$
TVD from rotary bushing to casing shoe $=4000 \mathrm{ft}$
Mud in use $\quad=9.2 \mathrm{ppg}$
Maximum allowable mud weight, ppg $=8000.052 \div 4000+9.2$
Maximum allowable mud weight $\quad=13.0 \mathrm{ppg}$

Maximum Allowable Shut-in Casing (Annulus) Pressure

MASICP $=\underset{(\text { mud wt }, \mathrm{ppg}}{(\operatorname{maximum} \text { allowable }-\operatorname{mud} \mathrm{wt} \mathrm{in)}) \times 0.052 \times(\mathrm{RKB} \text { to casing shoe TVD, } \mathrm{ft})}$ use, ppg)
Example: Maximum allowable mud weight $\quad=13.3 \mathrm{ppg}$
Mud weight in use $\quad=11.5 \mathrm{ppg}$
TVD from rotary Kelly bushing to casing shoe $=4000 \mathrm{ft}$
MASICP $=(13.3 \mathrm{ppg}-11.5 \mathrm{ppg}) \times 0.052 \times 4000 \mathrm{ft}$
MASICP $=374$

Casing Burst Pressure - Subsea Stack

Step 1 Determine the internal yield pressure of the casing from the "Dimensions and Strengths" section of cement company's service handbook.

Step 2 Correct internal yield pressure for safety factor. Some operators use 80%; some use 75%, and others use 70% :

Correct internal yield pressure, $\mathrm{psi}=($ internal yield pressure, psi$) \times \mathrm{SF}$
Step 3 Determine the hydrostatic pressure of the mud in use:
NOTE: The depth is from the rotary Kelly bushing (RKB) to the mud line and includes the air gap plus the depth of seawater.

HP, $\mathrm{psi}=($ mud weight in use, ppg$) \times 0052 \times$ (TVD, ft from RKB to mud line $)$
Step 4 Determine the hydrostatic pressure exerted by the seawater:
HPsw $=$ seawater weight, ppg x $0.052 \times$ depth of seawater, ft

Step 5 Determine casing burst pressure (CBP):
CBP x (corrected internal) - (HP of mud in use, psi + HP of seawater, psi) (yield pressure, psi)

Example: Determine the casing burst pressure, subsea stack, using the following data:
DATA: \quad Mud weight $=10.0 \mathrm{ppg} \quad$ Weight of seawater $=8.7 \mathrm{ppg}$
Air gap $=50 \mathrm{ft} \quad$ Water depth $=1500 \mathrm{ft}$ Correction (safety) factor $=80 \%$

Step 1 Determine the internal yield pressure of the casing from the "Dimension and Strengths" section of a cement company handbook:

9-5/8" casing - C-75, $53.5 \mathrm{lb} / \mathrm{ft}$
Internal yield pressure $=7430 \mathrm{psi}$
Step 2 Correct internal yield pressure for safety factor:
Corrected internal yield pressure $=7430 \mathrm{psi} \times 0.80$
Corrected internal yield pressure $=5944 \mathrm{psi}$
Step 3 Determine the hydrostatic pressure exerted by the mud in use:
HP of mud, $\mathrm{psi}=10.0 \mathrm{ppg} \times 0.052 \times(50 \mathrm{ft}+1500 \mathrm{ft})$
HP of mud $\quad=806 \mathrm{psi}$
Step 4 Determine the hydrostatic pressure exerted by the seawater:

$$
\begin{aligned}
& \text { HPsw }=8.7 \mathrm{ppg} \times 0.052 \times 1500 \mathrm{ft} \\
& \text { HPsw }=679 \mathrm{psi}
\end{aligned}
$$

Step 5 Determine the casing burst pressure:
Casing burst pressure, $\mathrm{psi}=5944 \mathrm{psi}-806 \mathrm{psi}+679 \mathrm{psi}$
Casing burst pressure $=5817 \mathrm{psi}$

Calculate Choke Line Pressure Loss (CLPL), Psi

CLPL $=\frac{0.000061 \times \text { MW, } \mathrm{ppg} \times \text { length, } \mathrm{ft} \mathrm{x} \mathrm{GPM}^{1.86}}{\text { choke line ID, in. }{ }^{4.86}}$
Example: Determine the choke line pressure loss (CLPL), psi, using the following data:
DATA: Mud weight $=14.0 \mathrm{ppg} \quad$ Choke line length $=2000 \mathrm{ft}$ Circulation rate $=225 \mathrm{gpm} \quad$ Choke line ID $=2.5 \mathrm{in}$.
$\mathrm{CLPL}=\frac{0.000061 \times 14.0 \mathrm{ppg} \times 2000 \mathrm{ft} \times 225^{1.86}}{2.5^{4.86}}$

$$
\text { CLPL }=\frac{40508.611}{85.899066}
$$

CLPL $=471.58 \mathrm{psi}$

Velocity, $\mathrm{Ft} / \mathrm{Mm}$, Through the Choke Line

$$
\mathrm{V}, \mathrm{ft} / \mathrm{mm}=\frac{24.5 \times \mathrm{gpm}}{\mathrm{ID}, \mathrm{in} .^{2}}
$$

Example: Determine the velocity, $\mathrm{ft} / \mathrm{mm}$, through the choke line using the following data:

$$
\text { Data: } \quad \text { Circulation rate }=225 \mathrm{gpm} \quad \text { Choke line ID }=2.5 \mathrm{in} .
$$

$$
\mathrm{V}, \mathrm{ft} / \mathrm{min}=\frac{24.5 \times 225}{2.5^{2}}
$$

$$
\mathrm{V} \quad=882 \mathrm{ft} / \mathrm{min}
$$

Adjusting Choke Line Pressure Loss for a Higher Mud Weight

New CLPL = higher mud wt, ppg x CLPL old mud weight, ppg

Example: Use the following data to determine the new estimated choke line pressure loss:
Data: Old mud weight $\quad=13.5 \mathrm{ppg}$
New mud weight $\quad=15.0 \mathrm{ppg}$
Old choke line pressure loss $=300 \mathrm{psi}$
New CLPL $=\frac{15.0 \mathrm{ppg} \times 300 \mathrm{psi}}{13.5 \mathrm{ppg}}$
New CLPL $=333.33$ psi

Minimum Conductor Casing Setting Depth

Example: Using the following data, determine the minimum setting depth of the conductor casing below the seabed:

Data: Maximum mud weight (to be used while drilling this interval) $=9.0 \mathrm{ppg}$ Water depth $=450 \mathrm{ft} \quad$ Gradient of seawater $\quad=0.445 \mathrm{psi} / \mathrm{ft}$
Air gap $\quad=60 \mathrm{ft} \quad$ Formation fracture gradient $\quad=0.68 \mathrm{psi} / \mathrm{ft}$
Step 1 Determine formation fracture pressure:

$$
\mathrm{psi}=(450 \times 0.445)+(0.68 \mathrm{x} " \mathrm{y} ") \mathrm{psi}=200.25+0.68 " \mathrm{y} "
$$

Step 2 Determine hydrostatic pressure of mud column:

```
psi = 9.0 ppg x 0.052 x (60 + 450 + "y")
psi = [9.0 x 0.052 x (60 + 450)] + (9.0 x 0.052 x " 'y")
psi = 238.68+0.468 "y"
```

Step 3 Minimum conductor casing setting depth:

$$
\begin{aligned}
& 200.25+0.68 " y "=238.68+0.468 " y " \\
& 0.68 " y "-0.468 " y "=238.68-200.25 \\
& 0.212 " y "=38.43 \\
& " y "=\frac{38.43}{0.212} \\
& " y "=181.3 \mathrm{ft}
\end{aligned}
$$

Therefore, the minimum conductor casing setting depth is 181.3 ft below the seabed.

Maximum Mud Weight with Returns Back to Rig Floor

Example: Using the following data, determine the maximum mud weight that can be used with returns back to the rig floor:

Data: Depths - Air gap $=75 \mathrm{ft}$
Conductor casing psi/ft set at $=1225 \mathrm{ft}$ RKB
Depths - Water depth $=600 \mathrm{ft} \quad$ Formation fracture gradient $=0.58 \mathrm{psi} / \mathrm{ft}$
Seawater gradient $\quad=0.445 \mathrm{psi} / \mathrm{ft}$
Step 1 Determine total pressure at casing seat:

$$
\begin{aligned}
& \mathrm{psi}=[0.58(1225-600-75)]+(0.445 \times 600) \\
& \mathrm{psi}=319+267 \\
& \mathrm{psi}=586
\end{aligned}
$$

Step 2 Determine maximum mud weight:
Max mud wt $=586$ psi $0.052 \div 1225 \mathrm{ft}$
Max mud wt $=9.2 \mathrm{ppg}$

Reduction in Bottomhole Pressure if Riser is Disconnected

Example: Use the following data and determine the reduction in bottom-hole pressure if the riser is disconnected:

Data:	$=75 \mathrm{ft}$	Water depth $=700 \mathrm{ft}$
Seawater gradient	$=0.445 \mathrm{psi} / \mathrm{ft}$	Well depth $=2020 \mathrm{ft} \mathrm{RKB}$
Mud weight	$=9.0 \mathrm{ppg}$	

Step 1 Determine bottomhole pressure:

```
BHP = 9.0 ppg x 0.052 x 2020 ft
BHP = 945.4 psi
```

Step 2 Determine bottomhole pressure with riser disconnected:

$$
\begin{aligned}
& \mathrm{BHP}=(0.445 \times 700)+[9.0 \times 0.052 \times(2020-700-75)] \\
& \mathrm{BHP}=311.5+582.7 \\
& \mathrm{BHP}=894.2 \mathrm{psi}
\end{aligned}
$$

Step 3 Determine bottomhole pressure reduction:
BHP reduction $=945.4 \mathrm{psi}-894.2 \mathrm{psi}$
BHP reduction $=51.2 \mathrm{psi}$

Bottomhole Pressure When Circulating Out a Kick

Example: Use the following data and determine the bottomhole pressure when circulating out a kick:

Data: Total depth - RKB $=13,500 \mathrm{ft}$ Gas gradient $=0.12 \mathrm{psi} / \mathrm{ft}$
Height of gas kick in casing $=1200 \mathrm{ft}$ Kill weight mud $=12.7 \mathrm{ppg}$
Original mud weight $\quad=12.0 \mathrm{ppg} \quad$ Pressure loss in annulus $=75 \mathrm{psi}$
Choke line pressure loss $\quad=220 \mathrm{psi}$ Air gap $=75 \mathrm{ft}$
Annulus (casing) pressure $=631 \mathrm{psi}$ Water depth $=1500 \mathrm{ft}$
Original mud in casing below gas $=5500 \mathrm{ft}$
Step 1 Hydrostatic pressure in choke line:

$$
\begin{aligned}
& \mathrm{psi}=12.0 \mathrm{ppg} \times 0.052 \times(1500+75) \\
& \mathrm{psi}=982.8
\end{aligned}
$$

Step 2 Hydrostatic pressure exerted by gas influx:

```
psi = 0.12 psi/ft x 1200 ft
psi = 144
```

Step 3 Hydrostatic pressure of original mud below gas influx:

```
psi = 12.0 ppg x 0.052 x 5500 ft
psi = 3432
```

Step 4 Hydrostatic pressure of kill weight mud:

```
\(\mathrm{psi}=12.7 \mathrm{ppg} \times 0.052 \times(13,500-5500-1200-1500-75)\)
\(\mathrm{psi}=12.7 \mathrm{ppg} \times 0.052 \times 5225\)
\(\mathrm{psi}=3450.59\)
```

Step 5 Bottomhole pressure while circulating out a kick:

Pressure in choke line	$=982.8$	psi
Pressure of gas influx	$=144$	psi
Original mud below gas in casing	$=3432$	psi
Kill weight mud	$=3450.59$	psi
Annulus (casing) pressure	$=630$	psi
Choke line pressure loss	$=200$	psi
Annular pressure loss	$=\underline{85}$	psi

7. Workover Operations

NOTE: The following procedures and calculations are more commonly used in workover operations, but at times they are used in drilling operations.

Bullheading

Bullheading is a term used to describe killing the well by forcing formation fluids back into the formation by pumping kill weight fluid down the tubing and in some cases down the casing.

The Bullheading method of killing a well is primarily used in the following situations:
a) Tubing in the well with a packer set. No communication exists between tubing and annulus.
b) Tubing in the well, influx in the annulus, and for some reason, cannot circulate through the tubing.
c) No tubing in the well. Influx in the casing. Bullheading is simplest, fastest, and safest method to use to kill the well.

NOTE: Tubing could be well off bottom also.
d) In drilling operations, bullheading has been used successfully in areas where hydrogen sulphide is a possibility.

Example calculations involved in bullheading operations:
Using the information given below, the necessary calculations will be performed to kill the well by bullheading. The example calculations will pertain to "a" above:

DATA: Depth of perforations

$$
\begin{aligned}
& =6480 \mathrm{ft} \\
& =0.862 \mathrm{psi} / \mathrm{ft} \\
& =0.401 \mathrm{psi} / \mathrm{ft} \\
& =326 \mathrm{psi} \\
& =2000 \mathrm{psi} \\
& =2-7 / 8 \mathrm{in} .-6.5 \mathrm{lb} / \mathrm{ft} \\
& =0.00579 \mathrm{bbl} / \mathrm{ft} \\
& =7260 \mathrm{psi} \\
& =8.4 \mathrm{ppg}
\end{aligned}
$$

Fracture gradient
Formation pressure gradient

$$
\text { Tubing hydrostatic pressure }(\mathrm{THP})=326 \mathrm{psi}
$$

Shut-in tubing pressure
Tubing
Tubing capacity

Tubing internal yield pressure
Kill fluid density

NOTE: Determine the best pump rate to use. The pump rate must exceed the rate of gas bubble migration up the tubing. The rate of gas bubble migration, $\mathrm{ft} / \mathrm{hr}$, in a shut-in well can be determined by the following formula:

Rate of gas migration, $\mathrm{ft} / \mathrm{hr}=\underline{\text { increase in pressure } \mathrm{per} / \mathrm{hr}, \mathrm{psi}}$ completion fluid gradient, psi/ft

Solution: Calculate the maximum allowable tubing (surface) pressure (MATP) for formation fracture:
a) MATP, initial, with influx in the tubing:

MATP, initial $=($ fracture gradient, $\mathrm{psi} / \mathrm{ft} \mathrm{x}$ depth of perforations, ft$)$ - $($ tubing hydrostatic $)$ (pressure, psi)

MATP, initial $=(0.862 \mathrm{psi} / \mathrm{ft} \times 6480 \mathrm{ft})-326 \mathrm{psi}$
MATP, initial $=5586 \mathrm{psi}-326 \mathrm{psi}$
MATP, initial $=5260 \mathrm{psi}$
b) MATP, final, with kill fluid in tubing:

MATP, final $=($ fracture gradient, $\mathrm{psi} / \mathrm{ft} \times$ depth of perforations, ft$)$ - (tubing hydrostatic $)$ (pressure, psi)

MATP, final $=(0.862 \times 6480)-(8.4 \times 0.052 \times 6480)$
MATP, final $=5586 \mathrm{psi}-2830 \mathrm{psi}$
MATP, final $=2756 \mathrm{psi}$

Determine tubing capacity:
Tubing capacity, $\mathrm{bbl}=$ tubing length, ft x tubing capacity, $\mathrm{bbl} / \mathrm{ft}$
Tubing capacity bbl, $=6480 \mathrm{ft} \times 0.00579 \mathrm{bbl} / \mathrm{ft}$
Tubing capacity $\quad=37.5 \mathrm{bbl}$

Plot these values as shown below:

Figure 4-3. Tubing pressure profile.

Lubricate and Bleed

The lubricate and bleed method involves alternately pumping a kill fluid into the tubing or into the casing if there is no tubing in the well, allowing the kill fluid to fall, then bleeding off a volume of gas until kill fluid reaches the choke. As each volume of kill fluid is pumped into the tubing, the SITP should decrease by a calculated value until the well is eventually killed.

This method is often used for two reasons: 1) shut-in pressures approach the rated working pressure of the wellhead or tubing and dynamic pumping pressure may exceed the limits, as in the case of bullheading, and 2) either to completely kill the well or lower the SITP to a value where other kill methods can be safely employed without exceeding rated limits.

This method can also be applied when the wellbore or perforations are lugged, rendering bullheading useless. In this case, the well can be killed without necessitating the use of tubing or snubbing small diameter tubing.

Users should be aware that the lubricate and bleed method is often a very time consuming process, whereas another method may kill the well more quickly. The following is an example of a typical lubricate and bleed kill procedure.

Example: A workover is planned for a well where the SITP approaches the working pressure of the wellhead equipment. To minimise the possibility of equipment failure, the lubricate and bleed method will be used to reduce the SITP to a level at which bullheading can be safely conducted. The data below will be used to describe this procedure:

TVD $\quad=6500 \mathrm{ft}$ Depth of perforations $=6450 \mathrm{ft}$
SITP $\quad=2830 \mathrm{psi}$ Tubing $6.5 \mathrm{lb} / \mathrm{ft}-\mathrm{N}-80=2-7 / 8 \mathrm{in}$.
Kill fluid density $\quad=9.0 \mathrm{ppg} \quad$ Wellhead working pressure $=3000 \mathrm{psi}$
Tubing internal yield $=10,570 \mathrm{psi} \quad$ Tubing capacity $\quad=0.00579 \mathrm{bbl} / \mathrm{ft}(172.76 \mathrm{ft} / \mathrm{bbl})$
Calculations: Calculate the expected pressure reduction for each barrel of kill fluid pumped:
$\mathrm{psi} / \mathrm{bbl}=$ tubing capacity, $\mathrm{ft} / \mathrm{bbl} \times 0.052 \times$ kill weight fluid, ppg
$\mathrm{psi} / \mathrm{bbl}=172.76 \mathrm{ft} / \mathrm{bbl} \times 0.052 \times 9.0 \mathrm{ppg}$
$\mathrm{psi} / \mathrm{bbl}=80.85$
For each one barrel pumped, the SITP will be reduced by 80.85 psi .
Calculate tubing capacity, bbl, to the perforations:
$\mathrm{bbl}=$ tubing capacity, $\mathrm{bbl} / \mathrm{ft} \mathrm{x}$ depth to perforations, ft
$\mathrm{bbl}=0.00579 \mathrm{bbl} / \mathrm{ft} \times 6450 \mathrm{ft}$
$\mathrm{bbl}=37.3 \mathrm{bbl}$

Procedure:

1. Rig up all surface equipment including pumps and gas flare lines.
2. Record SITP and SICP.
3. Open the choke to allow gas to escape from the well and momentarily reduce the SITP.
4. Close the choke and pump in 9.0 ppg brine until the tubing pressure reaches 2830 psi .
5. Wait for a period of time to allow the brine to fall in the tubing. This period will range from $1 / 4$ to 1 hour depending on gas density, pressure, and tubing size.
6. Open the choke and bleed gas until 9.0 brine begins to escape.
7. Close the choke and pump in 9.0 ppg brine water.
8. Continue the process until a low level, safe working pressure is attained.

A certain amount of time is required for the kill fluid to fall down the tubing after the pumping stops. The actual waiting time is not to allow fluid to fall, but rather, for gas to migrate up through the kill fluid. Gas migrates at rates of 1000 to $2000 \mathrm{ft} / \mathrm{hr}$. Therefore considerable time is required for fluid to fall or migrate to 6500 ft . Therefore, after pumping, it is important to wait several minutes before bleeding gas to prevent bleeding off kill fluid through the choke.

References

Adams, Neal, Well Control Problems and Solutions, PennWell Publishing Company, Tulsa, OK, 1980.
Adams, Neal, Workover Well Control, PennWell Publishing Company, Tulsa, OK, 1984.
Goldsmith, Riley, Why Gas Cut Mud Is Not Always a Serious Problem, World Oil, Oct. 1972.
Grayson, Richard and Fred S. Mueller, Pressure Drop Calculations For a Deviated Wellbore, Well Control Trainers Roundtable, April 1991.
Petex, Practical Well Control; Petroleum Extension Service University of Texas, Austin, Tx, 1982.
Well Control Manual, Baroid Division, N.L. Petroleum Services, Houston, Texas.
Various Well Control Schools/Courses/Manuals
NL Baroid, Houston, Texas
USL Petroleum Training Service, Lafayette, La.
Prentice \& Records Enterprises, Inc., Lafayette, La.
Milchem Well Control, Houston, Texas
Petroleum Extension Service, Univ. of Texas, Houston, Texas
Aberdeen Well Control School, Gene Wilson, Aberdeen, Scotland

CHAPTER FIVE

ENGINEERING CALCULATIONS

1. Bit Nozzle Selection - Optimised Hydraulics

These series of formulas will determine the correct jet sizes when optimising for jet impact or hydraulic horsepower and optimum flow rate for two or three nozzles.

1. Nozzle area, sq in.:

$$
\text { Nozzle area, sq in. }=\frac{\mathrm{N} 1^{2}+\mathrm{N} 2^{2}+\mathrm{N} 3^{2}}{1303.8}
$$

2. Bit nozzle pressure loss, psi (Pb):

$$
\mathrm{Pb}=\frac{\mathrm{gpm}^{2} \times \text { MW, } \mathrm{ppg}}{10858 \times \text { nozzle area, sq in. }{ }^{2}}
$$

3. Total pressure losses except bit nozzle pressure loss, psi (Pc):
$\mathrm{Pc}_{1} \& \mathrm{Pc}_{2}=$ circulating pressure, psi - bit nozzle pressure Loss.
4. Determine slope of line M:

$$
\mathrm{M}=\frac{\log \left(\mathrm{Pc}_{1} \div \mathrm{Pc}_{2}\right)}{\log \left(\mathrm{Q}_{1} \div \mathrm{Q}_{2}\right)}
$$

5. Optimum pressure losses (Popt)
a) For impact force:

$$
\text { Popt }=\frac{2}{M+2} \times \operatorname{Pmax}
$$

b) For hydraulic horsepower:

$$
\text { Popt }=\frac{1}{M+1} \times \operatorname{Pmax}
$$

6. For optimum flow rate (Qopt):
a) For impact force:

b) For hydraulic horsepower:

$$
\text { Qopt, gpm }={\underset{\text { Pmax }}{(\text { Popt }})^{1 \div M} \times \text { Q1 }}^{\text {Pm }}
$$

7. To determine pressure at the bit $(\mathrm{Pb}): \quad \mathrm{Pb}=\mathrm{Pmax} — \mathrm{Popt}$
8. To determine nozzle area, sq in.: Nozzle area, sq in. $=\sqrt{\underline{\text { opt }^{2} \times \mathrm{MW}, \mathrm{ppg}}}$ 10858 x Pmax
9. To determine nozzles, 32 nd in. for three nozzles:

$$
\text { Nozzles }=\sqrt{\frac{\text { Nozzle area, sq in. } \times 32}{3 \times 0.7854}}
$$

10. To determine nozzles, 32 nd in. for two nozzles:

Nozzles $=\sqrt{\underline{\text { Nozzle area, sq in. } \times 32}}$
2×0.7854

Example: Optimise bit hydraulics on a well with the following:
Select the proper jet sizes for impact force and hydraulic horsepower for two jets and three jets:

DATA: Mud weight $=13.0 \mathrm{ppg}$ Maximum surface pressure $=3000 \mathrm{psi}$
Pump rate $1=420 \mathrm{gpm}$ Pump pressure $1 \quad=3000 \mathrm{psi}$
Pump rate $2=275 \mathrm{gpm}$ Pump pressure $2 \quad=1300 \mathrm{psi}$
Jet sizes $\quad=17-17-17$

1. Nozzle area, sq in.:

Nozzle area, sq in. $=\frac{17^{2}+17^{2}+17^{2}}{1303.8}$
Nozzle area, sq in. $=0.664979$
2. Bit nozzle pressure loss, psi (Pb):
$\mathrm{Pb},=\frac{4202 \times 13.0}{10858 \times 0.6649792}$
$\mathrm{Pb},=478 \mathrm{psi}$
$\mathrm{Pb}_{2}=275^{2} \times 13.0$
10858×0.6649792
$\mathrm{Pb}_{2}=205 \mathrm{psi}$
3. Total pressure losses except bit nozzle pressure loss (Pc), psi:
$\mathrm{Pc},=3000 \mathrm{psi}-478 \mathrm{psi}$
$\mathrm{Pc},=2522 \mathrm{psi}$
$\mathrm{Pc}_{2}=1300 \mathrm{psi}-205 \mathrm{psi}$
$\mathrm{Pc}_{2}=1095 \mathrm{psi}$
4. Determine slope of line (M):
$M=\underline{\log (2522 \div 1095)}$ \log (420 275)
$\mathrm{M}=\frac{0.3623309}{0.1839166}$
$\mathrm{M}=1.97$
5. Determine optimum pressure losses, psi (Popt):
a) For impact force: $\quad \begin{array}{ll}\text { Popt }=\frac{2}{1.97+2} \times 3000 \\ & \text { Popt }=1511 \mathrm{psi}\end{array}$
b) For hydraulic horsepower: $\begin{aligned} & \text { Popt }=\frac{1}{1.97+1} \times 3000 \\ & \text { Popt }=1010 \mathrm{psi}\end{aligned}$
6. Determine optimum flow rate (Qopt):
a) For impact force:

$$
\begin{aligned}
& \text { Qopt, } \operatorname{gpm}=\left(\frac{1511}{3000}\right)^{1 \div 1.97} \times 420 \\
& \text { Qopt }=297 \mathrm{gpm}
\end{aligned}
$$

b) For hydraulic horsepower: \quad Qopt, $g p m=\left(\frac{1010}{3000}{ }^{1 \div 1.97} \mathrm{x} 420\right.$

$$
\text { Qopt }=242 \mathrm{gpm}
$$

7. Determine pressure losses at the bit (Pb) :
a) For impact force:
$\mathrm{Pb}=3000 \mathrm{psi}-1511 \mathrm{psi}$

$$
\mathrm{Pb}=1489 \mathrm{psi}
$$

b) For hydraulic horsepower:

$$
\begin{aligned}
\mathrm{Pb} & =3000 \mathrm{psi}-1010 \mathrm{psi} \\
\mathrm{~Pb} & =1990 \mathrm{psi}
\end{aligned}
$$

8. Determine nozzle area, sq in.:
a) For impact force: \quad Nozzles area, sq. in. $=\sqrt{\frac{297^{2} \times 13.0}{10858 \times 1489}}$.
$\begin{aligned} \text { Nozzles area, sq. in. } & =\sqrt{0.070927} \\ \text { Nozzle area, } & =0.26632 \mathrm{sq} . \mathrm{in} .\end{aligned}$
b) For hydraulic horsepower: \quad Nozzles area, sq. in. $=\sqrt{\frac{242^{2} \times 13.0}{10858 \times 1990}}$

Nozzles area, sq. in. $=\sqrt{0.03523}$
Nozzle area, $\quad=0.1877$ sq. in.
9. Determine nozzle size, 32nd in.:
a) For impact force:

$$
\begin{aligned}
& \text { Nozzles }=\frac{\sqrt{0.26632} \times 32}{3 \times 0.7854} \\
& \text { Nozzles }=10.76
\end{aligned}
$$

b) For hydraulic horsepower: \quad Nozzles $=\sqrt{\frac{0.1877}{3 \times 0.7854} \times 32}$
Nozzles $=9.03$

NOTE: Usually the nozzle size will have a decimal fraction. The fraction times 3 will determine how many nozzles should be larger than that calculated.
a) For impact force:

$$
\begin{aligned}
0.76 \times 3 & =2.28 \text { rounded to } 2 \\
\text { so: } 1 \text { jet } & =10 / 32 \text { nds } \\
2 \text { jets } & =11 / 32 \text { nds }
\end{aligned}
$$

b) For hydraulic horsepower:

$$
0.03 \times 3=0.09 \text { rounded to } 0
$$

$$
\text { so: } 3 \text { jets = 9/32 nd in. }
$$

10. Determine nozzles, 32 nd in. for two nozzles:
a) For impact force:

$$
\text { Nozzles }=\sqrt{\frac{0.26632}{2 \times 0.7854} \times 32}
$$

$$
\text { Nozzles }=13.18 \text { sq in. }
$$

b) For hydraulic horsepower: \quad Nozzles $=\frac{\sqrt{0.1877}}{2 \times 0.7854} \times 32$
Nozzles $=11.06$ sq in.

2. Hydraulics Analysis

This sequence of calculations is designed to quickly and accurately analyse various parameters of existing bit hydraulics.

1. Annular velocity, $\mathrm{ft} / \mathrm{mm}(\mathrm{AV})$:
2. Jet nozzle pressure loss, psi (Pb) :

$$
\mathrm{Pb}=\frac{156.5 \times \mathrm{Q}^{2} \times \mathrm{MW}}{\left[(\mathrm{~N})^{2}+\left(\mathrm{N}_{2}\right)^{2}+\left(\mathrm{N}_{3}\right)^{2}\right]^{2}}
$$

3. System hydraulic horsepower available (Sys HHP):

$$
\text { SysHHP }=\frac{\text { surface, } \mathrm{psi} \times \mathrm{Q}}{1714}
$$

4. Hydraulic horsepower at bit (HHPb):

$$
\mathrm{HHPb}=\frac{\mathrm{Q} \times \mathrm{Pb}}{1714}
$$

5. Hydraulic horsepower per square inch of bit diameter: $\mathrm{HHPb} / \mathrm{sq}$ in. $=\frac{\mathrm{HHPb} \times 1.27}{{\text { bit } \operatorname{size}^{2}}^{\text {2 }}}$
6. Percent pressure loss at bit (\% psib):
$\% \mathrm{psib}=\frac{\mathrm{Pb}}{\text { surface, } \mathrm{psi}} \times 100$
7. Jet velocity, $\mathrm{ft} / \mathrm{sec}(\mathrm{Vn})$:
8. Impact force, lb, at bit (IF):
$\mathrm{Vn}=\frac{417.2 \times \mathrm{Q}}{\left(\mathrm{N}_{1}\right)^{2}+\left(\mathrm{N}_{2}\right)^{2}+\left(\mathrm{N}_{3}\right)^{2}}$
$\mathrm{IF}=\frac{(\mathrm{MW})(\mathrm{Vn})(\mathrm{Q})}{1930}$
9. Impact force per square inch of bit area (IF/sq in.):

$$
\mathrm{IF} / \mathrm{sq} \mathrm{in.}=\frac{\mathrm{IF} \mathrm{x} 1.27}{{\text { bit } \operatorname{size}^{2}}^{2}}
$$

Nomenclature:

AV	$=$ annular velocity, ft/mm	Q	$=$ circulation rate, gpm
Dh	$=$ hole diameter, in.	Dp	$=$ pipe or collar OD, in.
MW	$=$ mud weight, ppg	$\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3}$	$=$ jet nozzle sizes, 32nd in.
Pb	$=$ bit nozzle pressure loss, psi	HHP	= hydraulic horsepower at bit
Vn	$=$ jet velocity, ft/sec	IF	= impact force, lb
$\mathrm{IF} / \mathrm{sq}$ in.	$=$ impact force $\mathrm{lb} / \mathrm{sq}$ in of bit diameter		

Example: Mud weight $=12.0 \mathrm{ppg}$
Nozzle size $1=12-32 \mathrm{nd} / \mathrm{in}$.
Nozzle size $2=12-32 \mathrm{nd} / \mathrm{in}$.
Nozzle size $3=12-32 \mathrm{nd} / \mathrm{in}$.

Circulation rate $=520 \mathrm{gpm}$
Surface pressure $=3000 \mathrm{psi}$
Hole size $\quad=12-1 / 4 \mathrm{in}$.
Drill pipe OD $=5.0$ in.

1. Annular velocity, $\mathrm{ft} / \mathrm{mm}$:

$$
\begin{aligned}
& \mathrm{AV}=\frac{24.5 \times 520}{12.25^{2}-5.0^{2}} \\
& \mathrm{AV}=\frac{12740}{125.0625} \\
& \mathrm{AV}=102 \mathrm{ft} / \mathrm{mm}
\end{aligned}
$$

2. Jet nozzle pressure loss:

$$
\begin{aligned}
& \mathrm{Pb}=\frac{156.5 \times 5202 \times 12.0}{\left(12^{2}+12^{2}+12^{2}\right)^{2}} \\
& \mathrm{~Pb}=2721 \mathrm{psi}
\end{aligned}
$$

3. System hydraulic horsepower available: $\operatorname{Sys} \operatorname{HHP}=\frac{3000 \times 520}{1714}$

$$
\text { Sys HHP }=910
$$

4. Hydraulic horsepower at bit:

$$
\begin{aligned}
& \mathrm{HHPb}=\frac{2721 \times 520}{1714} \\
& \mathrm{HHPb}=826
\end{aligned}
$$

5. Hydraulic horsepower per square inch of bit area: HHP/sq in. $=\underline{826 \times 1.27}$ 12.252

$$
\mathrm{HHP} / \mathrm{sq} \text { in. }=6.99
$$

6. Percent pressure loss at bit:

$$
\begin{aligned}
& \% \mathrm{psib}=\frac{2721}{3000} \times 100 \\
& \% \mathrm{psib}=90.7
\end{aligned}
$$

7. Jet velocity, ft/see:

$$
\mathrm{Vn}=\frac{417.2 \times 520}{12^{2}+12^{2}+12^{2}}
$$

$$
V n=216944
$$

$$
432
$$

$$
\mathrm{Vn}=502 \mathrm{ft} / \mathrm{sec}
$$

8. Impact force, lb :

$$
\mathrm{IF}=\frac{12.0 \times 502 \times 520}{1930}
$$

$$
\mathrm{IF}=1623 \mathrm{lb}
$$

9. Impact force per square inch of bit area: $\mathrm{IF} / \mathrm{sq} \mathrm{in}=.\frac{1623 \times 1.27}{12.25^{2}}$IF/sq in. $=13.7$
10. Critical Annular Velocity and Critical Flow Rate
11. Determine n :
12. Determine K:

$$
\mathrm{K}=\frac{\phi 600}{1022^{\mathrm{n}}}
$$

3. Determine X:

$$
X=\frac{81600(\mathrm{Kp})(\mathrm{n})^{0.387}}{(\mathrm{Dh}-\mathrm{Dp})^{\mathrm{n}} \mathrm{MW}}
$$

4. Determine critical annular velocity: $\quad \mathrm{AVc}=(\mathrm{X})^{1 \div 2-\mathrm{n}}$
5. Determine critical flow rate:

$$
\mathrm{GPMc}=\frac{\mathrm{AVc}\left(\mathrm{Dh}^{2}-\mathrm{Dp}^{2}\right)}{24.5}
$$

Nomenclature:

n = dimensionless		$\mathrm{Dh}=$ hole diameter
$\mathrm{K}=$ dimensionles		Dp = pipe or collar
$\mathrm{X}=$ dimensionless		MW = mud weight, p
$\phi 600=600$ viscometer dial reading		Avc = critical annu
$\phi 300=300$ viscometer dial reading		GPMc = critical flow
Example:	Mud weight $=14.0 \mathrm{ppg}$	Hole diameter $=8.5 \mathrm{in}$.
	ф600 = 64	Pipe OD $=7.0 \mathrm{in}$.
	ф300 $=37$	

1. Determine n :

$$
\begin{aligned}
& \mathrm{n}=3.32 \log \frac{64}{37} \\
& \mathrm{n}=0.79
\end{aligned}
$$

2. Determine K :

$$
\begin{aligned}
K & =\frac{64}{1022^{0.79}} \\
K & =0.2684
\end{aligned}
$$

3. Determine X :

$$
\begin{aligned}
& X=\frac{81600(0.2684)(079) 0.387}{8.5-70.79 \times 14.0} \\
& X=\frac{19967.413}{19.2859}
\end{aligned}
$$

$$
X=1035
$$

4. Determine critical annular velocity:

$$
\begin{aligned}
& \mathrm{AVc}=(1035)^{1 \div(2-0.79)} \\
& \mathrm{AVc}=(1035)^{08264} \\
& \mathrm{AVc}=310 \mathrm{ft} / \mathrm{mm}
\end{aligned}
$$

5. Determine critical flow rate:

$$
\mathrm{GPMc}=\frac{310(8.52-7.02)}{24.5}
$$

GPMc $=294$ gpm

4. "d" Exponent

The "d" exponent is derived from the general drilling equation: $\quad \mathbf{R} \div \mathbf{N}=\mathbf{a}\left(\mathbf{W}^{\mathbf{d}} \div \mathbf{D}\right)$
where $R=$ penetration rate $d=$ exponent in general drilling equation, dimensionless
$\mathrm{N}=$ rotary speed, rpm $\quad \mathrm{a}=\mathrm{a}$ constant, dimensionless
$\mathrm{W}=$ weight on bit, lb
"d" exponent equation: "d" $=\log (R \div 60 N) \div \log (12 W \div 1000 D)$
where $d=d$ exponent, dimensionless
$\mathrm{R}=$ penetration rate, $\mathrm{ft} / \mathrm{hr}$
$\mathrm{N}=$ rotary speed, rpm
$\mathrm{W}=$ weight on bit, $1,000 \mathrm{lb}$
$\mathrm{D}=$ bit size, in.

Example: $\mathrm{R}=30 \mathrm{ft} / \mathrm{hr} \quad \mathrm{N}=120 \mathrm{rpm} \quad \mathrm{W}=35,000 \mathrm{lb} \quad \mathrm{D}=8.5 \mathrm{in}$.
Solution: $\quad d=\log [30 \div(60 \times 120)] \div \log [(12 \times 35)(1000 \times 8.5)]$
$d=\log (30 \div 7200) \div \log (420 \div 8500)$
$\mathrm{d}=\log 0.0042 \div \log 0.0494$
$\mathrm{d}=-2.377 \div-1.306$
$\mathrm{d}=1.82$

Corrected "d" exponent:
The "d" exponent is influenced by mud weight variations, so modifications have to be made to correct for changes in mud weight:
$\mathrm{d}_{\mathrm{c}}=\mathrm{d}\left(\mathrm{MW}_{1} \div \mathrm{MW}_{2}\right)$
where dc $=$ corrected "d" exponent $\mathrm{MW}_{1}=$ normal mud weight - 9.0 ppg
$\mathrm{MW}_{2}=$ actual mud weight, ppg
Example: $\mathrm{d}=1.64 \quad \mathrm{MW}_{1}=9.0 \mathrm{ppg} \quad \mathrm{MW}_{2}=12.7 \mathrm{ppg}$
Solution: $\quad d_{c}=1.64(9.0 \div 12.7)$

$$
\mathrm{d}_{\mathrm{c}}=1.64 \times 0.71
$$

$$
\mathrm{d}_{\mathrm{c}}=1.16
$$

5.

 Cuttings Slip VelocityThese calculations give the slip velocity of a cutting of a specific size and weight in a given fluid. The annular velocity and the cutting net rise velocity are also calculated.

Method 1

Annular velocity, $\mathrm{ft} / \mathrm{mm}$:

$$
\mathrm{AV}=\frac{24.5 \times \mathrm{Q}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}
$$

Cuttings slip velocity, $\mathrm{ft} / \mathrm{mm}$:

$$
\mathrm{Vs}=0.45\left(\underset { (\mathrm { MW }) (\mathrm { Dp }) } { (\mathrm { PV }) } \left[\sqrt{\left.36,800 \div(\mathrm{PV} \div(\mathrm{MW})(\mathrm{Dp}))^{2} \times(\mathrm{Dp})((\mathrm{DenP} \div \mathrm{MW})-1)+1^{-1}\right]}\right.\right.
$$

where $\mathrm{Vs}=$ slip velocity, ft/min $\quad \mathrm{PV}=$ plastic viscosity, cps
$\mathrm{MW}=$ mud weight, ppg $\quad \mathrm{Dp}=$ diameter of particle, in.
DenP = density of particle, ppg
DATA: Mud weight $=11.0 \mathrm{ppg} \quad$ Plastic viscosity $=13 \mathrm{cps}$
Diameter of particle $=0.25 \mathrm{in} . \quad$ Density of particle $=22 \mathrm{ppg}$
Flow rate $\quad=520 \mathrm{gpm} \quad$ Diameter of hole $=12-1 / 4 \mathrm{in}$.

$$
\text { Drill pipe OD } \quad=5.0 \mathrm{in} .
$$

Annular velocity, $\mathrm{ft} / \mathrm{mm}$:

$$
\mathrm{AV}=\frac{24.5 \times 520}{12.25^{2}-5.0^{2}}
$$

$$
\mathrm{AV}=102 \mathrm{ft} / \mathrm{min}
$$

Cuttings slip velocity, $\mathrm{ft} / \mathrm{mm}$:
Vs $=0.45(13)\left[\sqrt{36,800 \div(13 \div(11 \times 0.25))^{2} \times 0.25((22 \div 11)-1)+1^{-1}}\right]$
(11 x 0.25)
Vs $=0.45\left[4.7271\left[\sqrt{36,800 \div[4.727]^{2} \times 0.25 \times 1+1-1}\right]\right.$
$V s=2.12715(\sqrt{412.68639}-1)$
Vs $=2.12715 \times 19.3146$
$\mathrm{Vs}=41.085 \mathrm{ft} / \mathrm{mm}$

Cuttings net rise velocity:	Annular velocity Cuttings slip velocity Cuttings net rise velocity	$=-41 \mathrm{ft} / \mathrm{min}$
	$=61 \mathrm{ft} / \mathrm{min}$	

Method 2

1. Determine n

$$
\mathrm{n}=3.32 \log \frac{\phi 600}{\phi 300}
$$

2. Determine K:

$$
\mathrm{K}=\frac{\phi 600}{511^{\mathrm{n}}}
$$

3. Determine annular velocity, $\mathrm{ft} / \mathrm{mm}$:

$$
\mathrm{v}=\frac{24.5 \times \mathrm{Q}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}
$$

4. Determine viscosity (u):

$$
\mu=\left(\frac{2.4 \mathrm{v}}{\mathrm{Dh}-\mathrm{Dp}} \times \frac{2 \mathrm{n}+1)^{\mathrm{n}}}{3 \mathrm{n}} \times \frac{(200 \mathrm{~K}(\mathrm{Dh}-\mathrm{Dp})}{\mathrm{v}}\right.
$$

5. Slip velocity (Vs), ft/mm:

$$
\text { Vs }=\frac{(\text { DensP }- \text { MW })^{0.667} \times 175 \times \text { DiaP }}{\text { MW }^{0.333} \times \mu^{0.333}}
$$

Nomenclature:

$\mathrm{n}=$ dimensionless
Q = circulation rate, gpm
$\mathrm{K}=$ dimensionless
Dh = hole diameter, in.
$\phi 600=600$ viscometer dial reading
DensP = cutting density, ppg
$\phi 300=300$ viscometer dial reading
DiaP = cutting diameter, in.
Dp = pipe or collar OD, in.
v $\quad=$ annular velocity, $\mathrm{ft} / \mathrm{min}$
$\mu=$ mud viscosity, cps

Example: Using the data listed below, determine the annular velocity, cuttings slip velocity, and the cutting net rise velocity:

DATA: Mud weight $=11.0 \mathrm{ppg} \quad$ Plastic viscosity $=13 \mathrm{cps}$
Yield point $=10 \mathrm{lb} / 100 \mathrm{sq} . \mathrm{ft} \quad$ Diameter of particle $=0.25 \mathrm{in}$.
Hole diameter $=12.25 \mathrm{in} . \quad$ Density of particle $=22.0 \mathrm{ppg}$
Drill pipe OD $=5.0 \mathrm{in}$. Circulation rate $=520 \mathrm{gpm}$

1. Determine n :

$$
\begin{aligned}
& \mathrm{n}=3.32 \log \frac{36}{23} \\
& \mathrm{n}=0.64599
\end{aligned}
$$

2. Determine K:

$$
\begin{aligned}
\mathrm{K} & =\underline{23}_{511^{0.64599}} \\
\mathrm{~K} & =0.4094
\end{aligned}
$$

3. Determine annular velocity, $\mathrm{ft} / \mathrm{mm}: \quad \mathrm{v}=\underline{24.5 \times 520}$

$$
12.25^{2}-5.0^{2}
$$

$$
\mathrm{v}=\frac{12,740}{125.06}
$$

$$
\mathrm{v}=102 \mathrm{ft} / \mathrm{min}
$$

4. Determine mud viscosity, cps:

$$
\begin{aligned}
\mu & \left.=\frac{(2.4 \times 102}{12.25-5.0} \times \frac{2(0.64599)+1}{3 \times 0.64599}\right)^{0.64599} \times \frac{(200 \times 0.4094 \times(12.25-5)}{102} \\
\mu & =\left(\frac{2448}{7.25} \times \frac{2.292}{1.938}\right)^{0.64599} \times \frac{593.63}{102} \\
\mu & =(33.76 \times 1.1827)^{0.64599} \times 5.82 \\
\mu & =10.82 \times 5.82 \\
\mu & =63 \mathrm{cps}
\end{aligned}
$$

5. Determine slip velocity (Vs), ft/mm: $\mathrm{Vs}=\frac{(22-11)^{0.667} \times 175 \times 0.25}{11^{0.333} \times 63^{0.333}}$

$$
\begin{aligned}
& \mathrm{Vs}=\frac{4.95 \times 175 \times 0.25}{2.222 \times 3.97} \\
& \mathrm{Vs}=\frac{216.56}{8.82} \\
& \mathrm{Vs}=24.55 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

6. Determine cuttings net rise velocity, $\mathrm{ft} / \mathrm{mm}$: Annular velocity $=102 \mathrm{ft} / \mathrm{mm}$ Cuttings slip velocity $=-24.55 \mathrm{ft} / \mathrm{mm}$ Cuttings net rise velocity $=77.45 \mathrm{ft} / \mathrm{mm}$

6. Surge and Swab Pressures

Method 1

1. Determine n: $\quad \mathrm{n}=3.32 \log \frac{\phi 600}{\phi 300}$
2. Determine K: $\quad K=\frac{\phi 600}{511^{n}}$
3. Determine velocity, $\mathrm{ft} / \mathrm{mm}$:

For plugged flow:

$$
\mathrm{v}=\left[0.45+\frac{\mathrm{Dp}^{2}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}\right] \mathrm{Vp}
$$

For open pipe:

$$
\mathrm{v}=\left[0.45+\frac{\mathrm{Dp}^{2}-\mathrm{Di}^{2}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}+\mathrm{Di}^{2}}\right] \mathrm{Vp}
$$

4. Maximum pipe velocity: $\quad \mathrm{Vm}=1.5 \mathrm{x} v$
5. Determine pressure losses: $\quad \mathrm{Ps}=\frac{(2.4 \mathrm{Vm}}{\mathrm{Dh}-\mathrm{Dp}} \times \frac{2 \mathrm{n}+1)^{\mathrm{n}}}{3 \mathrm{n}} \times \frac{\mathrm{KL}}{300(\mathrm{Dh}-\mathrm{Dp})}$.

Nomenclature:

$\mathrm{n}=$ dimensionless
Di $=$ drill pipe or drill collar ID, in.
K = dimensionless
Dh = hole diameter, in.
$\phi 600=600$ viscometer dial reading
$\mathrm{Dp}=$ drill pipe or drill collar OD, in
$\phi 300=300$ viscometer dial reading
Ps = pressure loss, psi
$\mathrm{v} \quad=$ fluid velocity, ft/min
$\mathrm{Vp}=$ pipe velocity, ft/min
$\mathrm{Vm}=$ maximum pipe velocity, $\mathrm{ft} / \mathrm{mm}$
$\mathrm{L}=$ pipe length, ft

Example 1: Determine surge pressure for plugged pipe:

Data:	Well depth	$\begin{aligned} & =15,000 \mathrm{ft} \\ & =7-7 / 8 \mathrm{in} . \end{aligned}$	Drill pipe OD	$\begin{aligned} & =4-1 / 2 \mathrm{in} . \\ & =3.82 \mathrm{in} . \end{aligned}$
	Drill collar length	$=700 \mathrm{ft}$	d weight	
	Average pipe running	eed $=270 \mathrm{tt} / \mathrm{mm}$		
	Drill collar	= 6-1/4" OD	2-3/4" ID	
	Viscometer readings:	$\phi 600=140$		
		$\phi 300=80$		
1. De	ermine n :	$\mathrm{n}=3.32 \log \underline{140}$		
	80			
		$\mathrm{n}=0.8069$		

2. Determine K:

$$
\begin{aligned}
& \mathrm{K}=\underline{80} \\
& 511^{0.8069} \\
& \mathrm{~K}=0.522
\end{aligned}
$$

3. Determine velocity, ft/mm: $\quad \mathrm{v}=\left[0.45+\frac{4.5^{2}}{7.875^{2}-4.5^{2}}\right] 270$

$$
\begin{aligned}
& \mathrm{v}=(0.45+0.484) 270 \\
& \mathrm{v}=252 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

4. Determine maximum pipe velocity, $\mathrm{ft} / \mathrm{min}: \quad \mathrm{Vm}=1.5 \times 252$

$$
\mathrm{Vm}=378 \mathrm{ft} / \mathrm{min}
$$

5. Determine pressure losses, psi:
$\operatorname{Ps}=\left[\frac{2.4 \times 378}{7.875-4.5} \times \frac{2(0.8069)+1}{3(0.8069)}\right]^{0.8069} \times \frac{(0.522)(14300)}{300(7.875-4.5)}$
$\operatorname{Ps}=(268.8 \times 1.1798)^{0.8069} \times \frac{7464 . .6}{1012.5}$
Ps $=97.098 \times 7.37$
$\mathrm{Ps}=716 \mathrm{psi}$ surge pressure
Therefore, this pressure is added to the hydrostatic pressure of the mud in the wellbore.
If, however, the swab pressure is desired, this pressure would be subtracted from the hydrostatic pressure.

Example 2: Determine surge pressure for open pipe:

1. Determine velocity, $\mathrm{ft} / \mathrm{mm}:: \quad \mathrm{v}=\left[0.45+\frac{4.5^{2}-3.82^{2}}{7.875^{2}-4.5^{2}+3.82^{2}}\right] 270$

$$
v=\left(0.45+\frac{5.66}{56.4}\right) 270
$$

$$
\mathrm{v}=(0.45+0.100) 270
$$

$$
\mathrm{v}=149 \mathrm{ft} / \mathrm{mm}
$$

2 . Maximum pipe velocity, ft/mm:

$$
\begin{aligned}
& \mathrm{Vm}=149 \times 1.5 \\
& \mathrm{Vm}=224 \mathrm{ft} / \mathrm{mm}
\end{aligned}
$$

3. Pressure loss, psi: $\quad \operatorname{Ps}=\left[\frac{2.4 \times 224}{7.875-4.5} \times \frac{2(0.8069)+1}{3(0.8069)}\right]^{0.8069} \times \frac{(0.522)(14300)}{300(7.875-4.5)}$

$$
\begin{aligned}
& \mathrm{Ps}=(159.29 \times 1.0798)^{0.8069} \\
& \mathrm{Ps}=63.66 \times 7.37 \\
& \mathrm{Ps}=469 \mathrm{psi} \text { surge pressure }
\end{aligned}
$$

Therefore, this pressure would be added to the hydrostatic pressure of the mud in the wellbore.

If, however, the swab pressure is desired, this pressure would be subtracted from the hydrostatic pressure of the mud in the wellbore.

Method 2

Surge and swab pressures
Assume: 1) Plugged pipe
2) Laminar flow around drill pipe
3) Turbulent flow around drill collars

These calculations outline the procedure and calculations necessary to determine the increase or decrease in equivalent mud weight (bottomhole pressure) due to pressure surges caused by pulling or running pipe. These calculations assume that the end of the pipe is plugged (as in running casing with a float shoe or drill pipe with bit and jet nozzles in place), not open ended.
A. Surge pressure around drill pipe:

1. Estimated annular fluid velocity (v) around drill pipe: $\quad v=\left[0.45+\frac{\mathrm{Dp}^{2}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}\right] \mathrm{Vp}$
2. Maximum pipe velocity $(\mathrm{Vm}): \quad \mathrm{Vm}=\mathrm{v} \times 1.5$
3. Determine $\mathrm{n}: \quad \mathrm{n}=3.32 \log \phi 600$
4. Determine K: $\quad K=\frac{\phi 600}{511^{\mathrm{n}}}$
5. Calculate the shear rate (Ym) of the mud moving around the pipe: $\quad \mathrm{Ym}=\underline{2.4 \times \mathrm{Vm}}$
6. Calculate the shear stress (T) of the mud moving around the pipe: $\quad T=K(Y m)^{n}$
7. Calculate the pressure (Ps) decrease for the interval:

$$
\mathrm{Ps}=\frac{3.33 \mathrm{~T}}{\mathrm{Dh}-\mathrm{Dp}} \times \frac{\mathrm{L}}{1000}
$$

B. Surge pressure around drill collars:

1. Calculate the estimated annular fluid velocity (v) around the drill collars:
$\mathrm{v}=\left[0.45+\frac{\mathrm{Dp}{ }^{2}}{\mathrm{Dh}^{2}-\mathrm{Dp}^{2}}\right] \mathrm{Vp}$
2. Calculate maximum pipe velocity (Vm) : $\quad \mathrm{Vm}=\mathrm{v} \times 1.5$
3. Convert the equivalent velocity of the mud due to pipe movement to equivalent flow rate (Q):
$\mathrm{Q}=\underline{\mathrm{Vm}\left[(\mathrm{Dh})^{2}-(\mathrm{Dp})^{2}\right]}$
24.5
4. Calculate the pressure loss for each interval (Ps): Ps $=\frac{0.000077 \times \mathrm{MW}^{0.8} \times \mathrm{Q}^{1 \sim 8} \times \mathrm{PV}^{0.2} \times \mathrm{L}}{(\mathrm{Dh}-\mathrm{Dp})^{3} \times(\mathrm{Dh}+\mathrm{Dp})^{1.8}}$
C. Total surge pressures converted to mud weight:

Total surge (or swab) pressures: $\quad \mathrm{psi}=\mathrm{Ps}($ drill pipe $)+\mathrm{Ps}($ drill collars $)$
D. If surge pressure is desired: $\quad \mathrm{SP}, \mathrm{ppg}=\mathrm{Ps} \div 0.052 \div \mathrm{TVD}, \mathrm{ft}$ " + " MW , ppg
E. If swab pressure is desired: $\quad \mathrm{SP}, \mathrm{ppg}=\mathrm{Ps} \div 0.052 \div \mathrm{TVD}, \mathrm{ft}$ "-" $\mathrm{MW}, \mathrm{ppg}$

Example: Determine both the surge and swab pressure for the data listed below:
Data: Mud weight $=15.0 \mathrm{ppg} \quad$ Plastic viscosity $=60 \mathrm{cps}$ Yield point $\quad=20 \mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}$ Hole diameter $=7-7 / 8 \mathrm{in}$.
Drill pipe OD $\quad=4-1 / 2 \mathrm{in}$. Drill pipe length $=14,300 \mathrm{ft}$
Drill collar OD $=6-1 / 4 \mathrm{in}$. Drill collar length $=700 \mathrm{ft}$
Pipe running speed $=270 \mathrm{ft} / \mathrm{min}$
A. Around drill pipe:
1.Calculate annular fluid velocity (v) around drill pipe: $\quad v=\left[0.45+\frac{(45)^{2}}{7.875^{2}-4.5^{2}}\right] 270$

$$
\begin{aligned}
& \mathrm{v}=[0.45+0.4848] 270 \\
& \mathrm{v}=253 \mathrm{ft} / \mathrm{mm}
\end{aligned}
$$

2. Calculate maximum pipe velocity $(\mathrm{Vm}): \quad \mathrm{Vm}=253 \times 1.5$

$$
\mathrm{Vm}=379 \mathrm{ft} / \mathrm{min}
$$

NOTE: Determine n and K from the plastic viscosity and yield point as follows:

$$
P V+Y P=\phi 300 \text { reading } \quad \phi 300 \text { reading }+P V=\phi 600 \text { reading }
$$

Example: $\mathrm{PV}=60 \quad \mathrm{YP}=20$
$60+20=80(\phi 300$ reading $) \quad 80+60=140(\phi 600$ reading $)$
3. Calculate n :
4. Calculate K:

$$
\begin{aligned}
& \mathrm{n}=3.32 \log 80 \frac{140}{80} \\
& \mathrm{n}=0.8069 \\
& \mathrm{~K}=\frac{80}{511^{0.8069}} \\
& \mathrm{~K}=0.522
\end{aligned}
$$

5. Calculate the shear rate (Ym) of the mud moving around the pipe: $\quad \mathrm{Ym}=\underline{2.4 \times 379}$ (7.875-4.5)

$$
\mathrm{Ym}=269.5
$$

6. Calculate the shear stress (T) of the mud moving around the pipe:

$$
\begin{aligned}
& \mathrm{T}=0.522(269.5)^{0.8069} \\
& \mathrm{~T}=0.522 \times 91.457 \\
& \mathrm{~T}=47.74
\end{aligned}
$$

7. Calculate the pressure decrease (Ps) for the interval:

$$
\begin{aligned}
\mathrm{Ps} & =\frac{3.33(47.7)}{(7.875-4.5)} \times \frac{14,300}{1000} \\
\mathrm{Ps} & =47.064 \times 14.3 \\
\mathrm{Ps} & =673 \mathrm{psi}
\end{aligned}
$$

B. Around drill collars:

1. Calculate the estimated annular fluid velocity (v) around the drill collars:
$\mathrm{v}=\left[0.45+\left(6.25^{2} \div\left(7.875^{2}-6.25^{2}\right)\right)\right] 270$
$v=(0.45+1.70) 270$
$\mathrm{v}=581 \mathrm{ft} / \mathrm{mm}$
2. Calculate maximum pipe velocity (Vm):

$$
\begin{aligned}
& \mathrm{Vm}=581 \times 1.5 \\
& \mathrm{Vm}=871.54 \mathrm{ft} / \mathrm{mm}
\end{aligned}
$$

3. Convert the equivalent velocity of the mud due to pipe movement to equivalent flow-rate (Q):
$\mathrm{Q}=\frac{871.54\left(7.875^{2}-6.25^{2}\right)}{24.5}$
$\mathrm{Q}=\frac{20004.567}{24.5}$
$\mathrm{Q}=816.5$
4. Calculate the pressure loss (Ps) for the interval:
$P s=\frac{0.000077 \times 15^{0.8} \times 816^{1.8} \times 60^{0.2} \times 700}{(7.875-6.25)^{3} \times(7.875+6.25)^{1.8}}$
$P s=\frac{185837.9}{504.126}$
$\mathrm{Ps}=368.6 \mathrm{psi}$
C. Total pressures:

$$
\begin{aligned}
& \mathrm{psi}=672.9 \mathrm{psi}+368.6 \mathrm{psi} \\
& \mathrm{psi}=1041.5 \mathrm{psi}
\end{aligned}
$$

D. Pressure converted to mud weight, ppg:

$$
\begin{aligned}
& \mathrm{ppg}=1041.5 \mathrm{psi} \div 0.052 \div 15,000 \mathrm{ft} \\
& \mathrm{ppg}=1.34
\end{aligned}
$$

E. If surge pressure is desired:

Surge pressure, ppg $=15.0 \mathrm{ppg}+1.34 \mathrm{ppg}$
Surge pressure $\quad=16.34 \mathrm{ppg}$
F. If swab pressure is desired:

Swab pressure, $\mathrm{ppg}=15.0 \mathrm{ppg}-1.34 \mathrm{ppg}$
Swab pressure $=13.66 \mathrm{ppg}$

7. Equivalent Circulation Density (ECD)

1. Determine n :

$$
\mathrm{n}=3.32 \log \frac{\phi 600}{\phi 300}
$$

2. Determine K:

$$
K=\frac{\phi 600}{511^{n}}
$$

3. Determine annular velocity (v), $\mathrm{ft} / \mathrm{mm}: \quad \mathrm{v}=\underline{24.5 \times \mathrm{Q}}$
$\mathrm{Dh}^{2}-\mathrm{D}^{2}$
4. Determine critical velocity (Vc), $\mathrm{ft} / \mathrm{mm}$:
$\begin{aligned} \mathrm{Vc}= & \left(3.878 \times 10^{4} \times \mathrm{K}\right)^{(1 \div(2-\mathrm{n}))} \times\left(\frac{2.4}{\mathrm{Dh}-\mathrm{Dp}} \times \frac{2 \mathrm{n}+1}{3 \mathrm{n}}\right)^{(\mathrm{n} \div(2-\mathrm{n}))} \\ & \mathrm{MW}\end{aligned}$
5. Pressure loss for laminar flow (Ps), psi: Ps $=\left(\frac{2.4 v}{D h-D p} \times \frac{2 n+1}{3 n}\right)^{n} \times \frac{K L}{300(D h-D p)}$.
6. Pressure loss for turbulent flow (Ps), psi: $\quad \mathrm{Ps}=\frac{7.7 \times 10^{-5} \mathrm{xMW}^{0.8} \times \mathrm{Q}^{1.8} \times \mathrm{PV}^{0.2} \times \mathrm{L}}{(\mathrm{Dh}-\mathrm{Dp})^{3} \times(\mathrm{Dh}+\mathrm{Dp})^{1.8}}$
7. Determine equivalent circulating density (ECD), ppg:

ECD, $\mathrm{ppg}=\mathrm{Ps}-0.052$ TVD, $\mathrm{ft}+0 \mathrm{MW}, \mathrm{ppg}$
Example: Equivalent circulating density (ECD), ppg:
Data:

Mud weight	$=12.5 \mathrm{ppg}$	Plastic viscosity $=24 \mathrm{cps}$	
Yield point	$=12 \mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}$	Circulation rate $=400 \mathrm{gpm}$	
Drill collar OD	$=6.5 \mathrm{in}$.	Drill pipe OD $=5.0 \mathrm{in}$	
Drill collar length	$=700 \mathrm{ft}$	Drill pipe length	$=11,300 \mathrm{ft}$
True vertical depth	$=12,000 \mathrm{ft}$	Hole diameter	$=8.5 \mathrm{in}$.

NOTE: If $\phi 600$ and $\phi 300$ viscometer dial readings are unknown, they may be obtained from the plastic viscosity and yield point as follows:
$24+12=36$ Thus, 36 is the $\phi 300$ reading.
$36+24=60$ Thus, 60 is the $\phi 600$ reading.

1. Determine n :

$$
\begin{aligned}
& \mathrm{n}=3.32 \log \frac{60}{36} \\
& \mathrm{n}=0.7365 \\
& \mathrm{~K}=\underline{36}_{511^{3.7365}}^{0.73644} \\
& \mathrm{~K}=0.3
\end{aligned}
$$

2. Determine K:

3a. Determine annular velocity (v), ft/mm, around drill pipe:

$$
\begin{aligned}
& \mathrm{v}=\frac{24.5 \times 400}{8.5^{2}-5.0^{2}} \\
& \mathrm{v}=207 \mathrm{ft} / \mathrm{mm}
\end{aligned}
$$

3b. Determine annular velocity (v), ft/mm, around drill collars: $\mathrm{v}=\underline{24.5 \times 400}$

$$
8.5^{2}-6.5^{2}
$$

$\mathrm{v}=327 \mathrm{ft} / \mathrm{mm}$

4a. Determine critical velocity (Vc), $\mathrm{ft} / \mathrm{mm}$, around drill pipe:
$\mathrm{Vc}=\frac{\left(3.878 \times 10^{4} \times 0.3644\right)^{(1 \div(2-0.7365))}}{12.5} \times\left(\frac{2.4}{8.5-5.0} \times \frac{2(0.7365)+1}{3(0.7365)}\right)^{(0.7365 \div(2-0.7365))}$
$V c=(1130.5)^{0.791} \mathrm{x}(0.76749)^{0.5829}$
$\mathrm{Vc}=260 \times 0.857$
$\mathrm{Yc}=223 \mathrm{ft} / \mathrm{mm}$

4b. Determine critical velocity (Yc), $\mathrm{ft} / \mathrm{mm}$, around drill collars:
$\mathrm{Vc}=\left(\frac{\left(3.878 \times 10^{4} \times 0.3644\right)^{(1 \div(2-0.7365))}}{12.5} \times \frac{(1}{2.4}_{8.5-6.5} \times \frac{2(0.7365)+1)}{3(0.7365)}\right)^{(0.7365 \div(2-0.7365))}$
$\mathrm{Vc}=(1130.5)^{0.791} \mathrm{x}(1.343)^{0.5829}$
$\mathrm{Vc}=260 \times 1.18756$
$\mathrm{Vc}=309 \mathrm{ft} / \mathrm{mm}$
Therefore: Drill pipe: $207 \mathrm{ft} / \mathrm{mm}$ (v) is less than $223 \mathrm{ft} / \mathrm{mm}(\mathrm{Vc})$, Laminar flow, so use Equation 5 for pressure loss.
Drill collars: $327 \mathrm{ft} / \mathrm{mm}$ (v) is greater than $309 \mathrm{ft} / \mathrm{mm}$ (Vc) turbulent flow, so use Equation 6 for pressure loss.
5. Pressure loss opposite drill pipe:
$P s=\left[\frac{2.4 \times 207}{8.5-5.0} \times \frac{2(0.7365)+1}{3(0.7365)}\right]^{0.7365} \times \frac{0.3644 \times 11,300}{300(8.5-5.0)}$
$P s=\left[\frac{2.4 \times 207}{8.5-5.0} \times \frac{2(0.7365)+1}{3(0.7365}\right]^{0.7365} \times \frac{3.644 \times 11,300}{300(8.5-5.0)}$
$P s=(141.9 \times 1.11926)^{0.7365} \times 3.9216$
$\mathrm{Ps}=41.78 \times 3.9216$
$\mathrm{Ps}=163.8 \mathrm{psi}$
6. Pressure loss opposite drill collars:

$$
\operatorname{Ps}=\frac{7.7 \times 10^{-5} \times 12.5^{0.8} \times 400^{1.8} \times 24^{0.2} \times 700}{(8.5-6.5)^{3} \times(8.5+6.5)^{1.8}}
$$

Ps $=37056.7$
8×130.9
$\mathrm{Ps}=35.4 \mathrm{psi}$
Total pressure losses: $\quad \mathrm{psi}=163.8 \mathrm{psi}+35.4 \mathrm{psi}$ $\mathrm{psi}=199.2 \mathrm{psi}$
7. Determine equivalent circulating density (ECD), ppg:

ECD, ppg $=199.2 \mathrm{psi} \div 0.052 \div 12,000 \mathrm{ft}+12.5 \mathrm{ppg}$
$\mathrm{ECD}=12.82 \mathrm{ppg}$

9. Fracture Gradient Determination - Surface Application

Method 1: Matthews and Kelly Method

$\mathrm{F}=\mathrm{P} / \mathrm{D}+\mathrm{Ki} \sigma / \mathrm{D}$
where $\mathrm{F}=$ fracture gradient, $\mathrm{psi} / \mathrm{ft}$
$\sigma=$ matrix stress at point of interest, psi
$\mathrm{P}=$ formation pore pressure, psi
$\mathrm{D}=$ depth at point of interest, TVD, ft $\mathrm{Ki}=$ matrix stress coefficient, dimensionless

Procedure:

1. Obtain formation pore pressure, P, from electric logs, density measurements, or from mud logging personnel.
2. Assume $1.0 \mathrm{psi} / \mathrm{ft}$ as overburden pressure (S) and calculate σ as follows: $\quad \sigma=\mathrm{S}-\mathrm{P}$
3. Determine the depth for determining Ki by: $\mathrm{D}=\frac{\sigma}{0.535}$.
4. From Matrix Stress Coefficient chart, determine Ki:
5. I'rom Matrix Stress Coefficient chari, Ucturime Ku:

Figure 5-1. Matrix stress coefficient chart
5. Determine fracture gradient, $\mathrm{psi} / \mathrm{ft}$:

$$
F=\frac{P}{D}+K i \times \frac{\sigma}{D}
$$

6. Determine fracture pressure, psi:
$\mathrm{F}, \mathrm{psi}=\mathrm{F} \times \mathrm{D}$
7. Determine maximum mud density, ppg:

MW, ppg $=\mathrm{F} \div 0.052$

Example: Casing setting depth $=12,000 \mathrm{ft}$
Formation pore pressure (Louisiana Gulf Coast) $=12.0 \mathrm{ppg}$

1. $\mathrm{P}=12.0 \mathrm{ppg} \times 0.052 \times 12,000 \mathrm{ft}$
$\mathrm{P}=7488 \mathrm{psi}$
2. $\sigma=12,000 \mathrm{psi}-7488 \mathrm{psi}$
$\sigma=4512 \mathrm{psi}$
3. $D=\frac{4512 \mathrm{psi}}{0.535}$
$\mathrm{D}=8434 \mathrm{ft}$
4. From chart $=\mathrm{Ki}=0.79 \mathrm{psi} / \mathrm{ft}$
5. $\mathrm{F}=\frac{7488}{12,000}+0.79 \times \frac{4512}{12,000}$
$\mathrm{F}=0.624 \mathrm{psi} / \mathrm{ft}+0.297 \mathrm{psi} / \mathrm{ft}$
$\mathrm{F}=0.92 \mathrm{psi} / \mathrm{ft}$
6. Fracture pressure, psi $=0.92 \mathrm{psi} / \mathrm{ft} \times 12,000 \mathrm{ft}$

Fracture pressure $=11,040 \mathrm{psi}$
7. Maximum mud density, $\mathrm{ppg}=\frac{0.92 \mathrm{psi} / \mathrm{ft}}{0.052}$

Maximum mud density $\quad=17.69 \mathrm{ppg}$

Method 2: Ben Eaton Method

$\mathrm{F}=((\mathrm{S} \div \mathrm{D})-(\mathrm{Pf} \div \mathrm{D})) \mathrm{x}(\mathrm{y} \div(1-\mathrm{y}))+(\mathrm{Pf} \div \mathrm{D})$
where $\mathrm{S} / \mathrm{D}=$ overburden gradient, $\mathrm{psi} / \mathrm{ft}$
$\mathrm{Pf} / \mathrm{D}=$ formation pressure gradient at depth of interest, $\mathrm{psi} / \mathrm{ft}$
y = Poisson's ratio
Procedure:

1. Obtain overburden gradient from "Overburden Stress Gradient Chart."
2. Obtain formation pressure gradient from electric logs, density measurements, or from logging operations.
3. Obtain Poisson's ratio from "Poisson's Ratio Chart."
4. Determine fracture gradient using above equation.
5. Determine fracture pressure, $\mathrm{psi} \quad \mathrm{psi}=\mathrm{F} \times \mathrm{D}$
6. Determine maximum mud density, ppg: $\quad \mathrm{ppg}=\mathrm{F} \div 0.052$

Example: Casing setting depth $=12,000 \mathrm{ft}$ Formation pore pressure $=12.0 \mathrm{ppg}$

1. Determine S / D from chart $=$ depth $=12,000 \mathrm{ft} \mathrm{S} / \mathrm{D}=0.96 \mathrm{psi} / \mathrm{ft}$
2. $\mathrm{Pf} / \mathrm{D}=12.0 \mathrm{ppg} \times 0.052=0.624 \mathrm{psi} / \mathrm{ft}$
3. Poisson's Ratio from chart $=0.47 \mathrm{psi} / \mathrm{ft}$
4. Determine fracture gradient:

$$
\begin{aligned}
& \mathrm{F}=(0.96-0.6243)(0.47 \div 1-0.47)+0.624 \\
& \mathrm{~F}=0.336 \times 0.88679+0.624 \\
& \mathrm{~F}=0.29796+0.624 \\
& \mathrm{~F}=0.92 \mathrm{psi} / \mathrm{ft}
\end{aligned}
$$

5. Determine fracture pressure:

$$
\begin{aligned}
\mathrm{psi} & =0.92 \mathrm{psi} / \mathrm{ft} \times 12,000 \mathrm{ft} \\
\mathrm{psi} & =11,040
\end{aligned}
$$

6. Determine maximum mud density:

$$
\begin{aligned}
& \mathrm{ppg}=\frac{0.92 \mathrm{psi} / \mathrm{ft}}{0.052} \\
& \mathrm{ppg}=17.69
\end{aligned}
$$

9. Fracture Gradient Determination - Subsea Applications

In offshore drilling operations, it is necessary to correct the calculated fracture gradient for the effect of water depth and flow-line height (air gap) above mean sea level. The following procedure can be used:

$$
\begin{array}{lllr}
\text { Example: } & \text { Air gap }=100 \mathrm{ft} & \text { Density of seawater } & =8.9 \mathrm{ppg} \\
& \text { Water depth }=2000 \mathrm{ft} & \text { Feet of casing below mud-line }=4000 \mathrm{ft}
\end{array}
$$

Procedure:

1. Convert water to equivalent land area, ft :
a) Determine the hydrostatic pressure of the seawater: HPsw $=8.9 \mathrm{ppg} \times 0.052 \times 2000 \mathrm{ft}$

$$
\text { HPsw }=926 \text { psi }
$$

b) From Eaton's Overburden Stress Chart, determine the overburden stress gradient from mean sea level to casing setting depth:

From chart: Enter chart at 6000 ft on left; intersect curved line and read overburden gradient at bottom of chart:

Overburden stress gradient $=0.92 \mathrm{psi} / \mathrm{ft}$
c) Determine equivalent land area, ft :

Equivalent feet $=\underline{926} \mathrm{psi}$
$0.92 \mathrm{psi} / \mathrm{ft}$

Figure 5-2. Eaton's overburden stress chart.
2. Determine depth for fracture gradient determination:

$$
\begin{aligned}
& \text { Depth, } \mathrm{ft}=4000 \mathrm{ft}+1006 \mathrm{ft} \\
& \text { Depth }=5006 \mathrm{ft}
\end{aligned}
$$

3. Using Eaton's Fracture Gradient Chart, determine the fracture gradient at a depth of 5006 ft :

From chart: Enter chart at a depth of 5006 ft ; intersect the 9.0 ppg line; then proceed up and read the fracture gradient at the top of the chart:

Fracture gradient $=14.7 \mathrm{ppg}$
4. Determine the fracture pressure:

$$
\begin{aligned}
& \mathrm{psi}=14.7 \mathrm{ppg} \times 0.052 \times 5006 \mathrm{ft} \\
& \mathrm{psi}=3827
\end{aligned}
$$

5. Convert the fracture gradient relative to the flow-line:

$$
\begin{aligned}
& \mathrm{Fc}=3827 \mathrm{psi} 0.052 \div 6100 \mathrm{ft} \\
& \mathrm{Fc}=12.06 \mathrm{ppg}
\end{aligned}
$$

where Fc is the fracture gradient, corrected for water depth, and air gap.

Figure 5-3 Eaton's Fracture gradient chart

10. Directional Drilling Calculations

Directional Survey Calculations

The following are the two most commonly used methods to calculate directional surveys:

1. Angle Averaging Method

North $=\mathrm{MD} \times \sin \cdot\left(\frac{(\mathrm{I} 1+\mathrm{I} 2)}{2} \times \cos \cdot \frac{(\mathrm{Al}+\mathrm{A} 2)}{2}\right.$
East $=\mathrm{MD} \times \sin \cdot\left(\frac{\mathrm{I} 1+\mathrm{I} 2}{2}\right) \times \sin \cdot\left(\frac{\mathrm{Al}+\mathrm{A} 2}{2}\right)$
Vert. $=$ MD x $\cos . \frac{(\mathrm{I} 1+\mathrm{I} 2)}{2}$
2. Radius of Curvature Method

$$
\text { North }=\frac{\mathrm{MD}(\cos . \mathrm{I} 1-\cos . \mathrm{I} 2)(\sin . \mathrm{A} 2-\sin . \mathrm{Al})}{(\mathrm{I} 2-\mathrm{I} 1)(\mathrm{A} 2-\mathrm{Al})}
$$

East $=\underline{M D}(\cos . \mathrm{I} 1-\cos . \mathrm{I} 2)(\cos . \mathrm{A} 2-\cos . \mathrm{Al})$

$$
(\mathrm{I} 2-\mathrm{I} 1)(\mathrm{A} 2-\mathrm{Al})
$$

Vert. $=\underline{M D(s i n . ~} 12-\sin . ~ I 1) ~(~) ~$

$$
(\mathrm{I} 2-\mathrm{I} 1)
$$

where MD = course length between surveys in measured depth, ft
I1, I2 = inclination (angle) at upper and lower surveys, degrees
$\mathrm{A} 1, \mathrm{~A} 2=$ direction at upper and lower surveys
Example: Use the Angle Averaging Method and the Radius of Curvature Method to calculate the following surveys:

Survey 1
 Survey 2

Depth, ft	7482	7782
Inclination, degrees	4	8
Azimuth, degrees	10	35

Angle Averaging Method:
North $=300 \times \sin .\left(\frac{4+8}{2}\right) \times \cos .\left(\frac{10+35}{2}\right)$
North $=300 \mathrm{x} \sin (6) \mathrm{x} \cos$. (22.5)
North $=300 \times .104528 \times .923879$
North $=28.97 \mathrm{ft}$
East $=300 \times \sin \cdot\left(\frac{4+8}{2}\right) \times \sin . \frac{(10+35)}{2}$
East $=300 \mathrm{x} \sin$. (6) $\mathrm{x} \sin$. (22.5)
East $=300 \mathrm{x} .104528 \times .38268$
East $=12.0 \mathrm{ft}$
Vert. $=300 \mathrm{x}$ cos. $(\underline{4+8})$
2
Vert. $=300 \mathrm{x}$ cos. (6)
Vert. $=300 \times .99452$
Vert. $=298.35 \mathrm{ft}$

Radius of Curvature Method:

$$
\text { North }=\frac{300(\cos .4-\cos .8)(\sin .35-\sin .10)}{(8-4)(35-10)}
$$

North $=\frac{300(.99756-.990268)(.57357-.173648)}{4 \times 25}$
North $=0.874629 \div 100$
North $=0.008746 \times 57.3^{2}$
North $=28.56 \mathrm{ft}$

$$
\text { East }=\frac{300(\cos .4-\cos .8)(\cos .10-\cos .35)}{(8-4)(35-10)}
$$

$$
\text { East }=\frac{300(99756-.99026)(.9848-.81915)}{4 \times 25}
$$

$$
\text { East }=\frac{300(0073)(.16565)}{100}
$$

$$
\text { East }=\frac{0.36277}{100}
$$

$$
100
$$

East $=0.0036277 \times 57.3^{2}$
East $=11.91 \mathrm{ft}$
Vert. $=\frac{300(\sin .8-\sin .4)}{(8-4)}$

$$
\text { Vert. }=\frac{300(0.13917-0.069756)}{(8-4)}
$$

Vert. $=\frac{300 \times .069414}{4}$
Vert. $=300 \times 0.069414$
4
Vert. $=5.20605 \times 57.3$
Vert. $=298.3 \mathrm{ft}$

Deviation/Departure Calculation

Deviation is defined as departure of the wellbore from the vertical, measured by the horizontal distance from the rotary table to the target. The amount of deviation is a function of the drift angle (inclination) and hole depth.

The following diagram illustrates how to determine the deviation/departure:

DATA:
$\mathrm{AB}=$ distance from the surface location to the KOP
$\mathrm{BC}=$ distance from KOP to the true vertical depth (TVD)
$\mathrm{BD}=$ distance from KOP to the bottom of the hole (MD)
$\mathrm{CD}=$ Deviation/departure-departure of the wellbore from the vertical
$\mathrm{AC}=$ true vertical depth
$\mathrm{AD}=$ Measured depth
Figure 5-4. Deviation/Departure
To calculate the deviation/departure (CD), $\mathrm{ft}: \quad \mathrm{CD}, \mathrm{ft}=\sin \mathrm{I} \times \mathrm{BD}$
Example: Kick off point (KOP) is a distance 2000 ft from the surface.
MD is 8000 ft . Hole angle (inclination) is 20 degrees.
Therefore the distance from KOP to MD $=6000 \mathrm{ft}(\mathrm{BD})$:
$\mathrm{CD}, \mathrm{ft}=\sin 20 \times 6000 \mathrm{ft}$
$\mathrm{CD}, \mathrm{ft}=0.342 \times 6000 \mathrm{ft}$
$\mathrm{CD}=2052 \mathrm{ft}$
From this calculation, the measured depth (MD) is 2052 ft away from vertical.

Dogleg Severity Calculation

Method 1

Dogleg severity (DLS) is usually given in degrees $/ 100 \mathrm{ft}$. The following formula provides dogleg severity in degrees $/ 100 \mathrm{ft}$ and is based on the Radius of Curvature Method:

DLS $=\left\{\cos .^{-1}[(\cos . \mathrm{I} 1 \times \cos . \mathrm{I} 2)+(\sin . \mathrm{I} 1 \times \sin .12) \times \cos .(\mathrm{A} 2-\mathrm{Al})]\right\} \times(100 \div \mathrm{CL})$
For metric calculation, substitute $\mathrm{x}(30 \div \mathrm{CL})$ i.e.
$\operatorname{DLS}=\left\{\cos .^{-1}[(\cos . \mathrm{I} 1 \times \cos . \mathrm{I} 2)+(\sin . \mathrm{I} 1 \mathrm{x} \sin .12) \times \cos .(\mathrm{A} 2-\mathrm{Al})]\right\} \times(30 \div \mathrm{CL})$
where DLS = dogleg severity, degrees $/ 100 \mathrm{ft}$
CL = course length, distance between survey points, ft
I1, I2 = inclination (angle) at upper and lower surveys, ft
$\mathrm{A} 1, \mathrm{~A} 2=$ direction at upper and lower surveys, degrees
${ }^{\wedge}$ Azimuth $=$ azimuth change between surveys, degrees

Example:	Survey 1	Survey 2
Depth, ft	4231	4262
Inclination, degrees	13.5	14.7
Azimuth, degrees	N 10 E	N 19 E

DLS $=\left\{\cos .^{-1}[(\cos .13 .5 \times \cos .14 .7)+(\sin .13 .5 \times \sin .14 .7 \times \cos .(19-10)]\} \times(100 \div 31)\right.$
DLS $=\left\{\cos ^{-1}[(.9723699 \times .9672677)+(.2334453 \times .2537579 \times .9876883)]\right\} \times(100 \div 31)$
DLS $=\left\{\cos .^{-1}[(.940542)+(.0585092)]\right\} \times(100 \div 31)$
DLS $=2.4960847 \times(100 \div 31)$
DLS $=8.051886$ degrees $/ 100 \mathrm{ft}$

Method 2

This method of calculating dogleg severity is based on the tangential method:
DLS =
\qquad
$\overline{\mathrm{L}[(\sin . \mathrm{I} 1 \mathrm{x} \sin . \mathrm{I} 2)(\sin . \mathrm{A} 1 \mathrm{x} \sin . \mathrm{A} 2+\cos . \mathrm{A} 1 \mathrm{x} \cos . \mathrm{A} 2)}+\cos . \mathrm{I} 1 \mathrm{x} \cos . \mathrm{I} 2]$
where DLS = dogleg severity, degrees/ 100 ft
L = course length, ft
II, 12 = inclination (angle) at upper and lower surveys, degrees
$\mathrm{Al}, \mathrm{A} 2=$ direction at upper and lower surveys, degrees

Example:	Survey 1	Survey 2
Depth	4231	4262
Inclination, degrees	13.5	14.7
Azimuth, degrees	N 10 E	N 19 E

DLS $=$ \qquad .
$31[(\sin .13 .5 \times \sin .14 .7)(\sin .10 \times \sin .19)+(\cos .10 \times \cos .119)+(\cos .13 .5 \times \cos .14 .7)]$
DLS $=\underline{100}$
30. 969

DLS $=3.229$ degrees $/ 100 \mathrm{ft}$

Available Weight on Bit in Directional Wells

A directionally drilled well requires that a correction be made in total drill collar weight because only a portion of the total weight will be available to the bit:

$\mathrm{P}=\mathrm{W} \times \operatorname{Cos} \mathrm{I}$

where $\quad \mathrm{P}=$ partial weight available for bit $\mathrm{I}=$ degrees inclination (angle)

$$
\begin{aligned}
& \mathrm{Cos}=\text { cosine } \\
& \mathrm{W}=\text { total weight of collars }
\end{aligned}
$$

Example: $\quad \mathrm{W}=45,000 \mathrm{lb} \quad \mathrm{I}=25$ degrees
$\mathrm{P}=45,000 \times \cos 25$
$\mathrm{P}=45,000 \times 0.9063$
$\mathrm{P}=40,784 \mathrm{lb}$
Thus, the available weight on bit is $40,784 \mathrm{lb}$.

Determining True Vertical Depth

The following is a simple method of correcting for the TVD on directional wells. This calculation will give the approximate TVD interval corresponding to the measured interval and is generally accurate enough for any pressure calculations. At the next survey, the TVD should be corrected to correspond to the directional Driller's calculated true vertical depth:
$\mathrm{TVD}_{2}=\cos \mathrm{Ix} \mathrm{CL}+\mathrm{TVD}_{1}$
where $\mathrm{TVD}_{2}=$ new true vertical depth, ft
$\mathrm{TVD}_{1}=$ last true vertical depth, ft
CL = course length - number of feet since last survey
$\cos =$ cosine
Example: TVD (last survey) $=8500 \mathrm{ft} \quad$ Deviation angle $=40$ degrees
Course length $=30 \mathrm{ft}$
Solution: $\quad \mathrm{TVD}_{2}=\cos 40 \times 30 \mathrm{ft}+8500 \mathrm{ft}$
$\mathrm{TVD}_{2}=0.766 \times 30 \mathrm{ft}+8500 \mathrm{ft}$
$\mathrm{TVD}_{2}=22.98 \mathrm{ft}+8500 \mathrm{ft}$
$\mathrm{TVD}_{2}=8522.98 \mathrm{ft}$

11. Miscellaneous Equations and Calculations

Surface Equipment Pressure Losses

where $\mathrm{SEpl}=$ surface equipment pressure loss, psi
C = friction factor for type of surface equipment
$\mathrm{Q}=$ circulation rate, gpm
$\mathrm{W}=$ mud weight, ppg

Type of Surface Equipment C
$1 \quad 1.0$
$2 \quad 0.36$
$3 \quad 0.22$
$4 \quad 0.15$
Example: Surface equipment type $=3$
C $\quad=0.22$
Mud weight $\quad=11.8 \mathrm{ppg}$
Circulation rate $=350 \mathrm{gpm}$

$$
\mathrm{SEpl}=0.22 \times 11.8 \times\left(\frac{(350}{100}\right)^{1.86}
$$

$\mathrm{SEpl}=2.596 \times(35)^{1.86}$
$\mathrm{SEpl}=2.596 \times 10.279372$
$\mathrm{SEpl}=26.69 \mathrm{psi}$

Drill Stem Bore Pressure Losses

$$
P=\frac{0.000061 \times \text { MW x L x Q }{ }^{1.86}}{\mathrm{~d}^{4.86}}
$$

where $\quad \mathrm{P}=$ drill stem bore pressure losses, $\mathrm{psi} \quad \mathrm{MW}=$ mud weight, ppg
$\mathrm{L}=$ length of pipe, $\mathrm{ft} \quad \mathrm{Q}=$ circulation rate, gpm $\mathrm{d}=$ inside diameter, in.

Example: Mud weight $=10.9 \mathrm{ppg} \quad$ Length of pipe $=6500 \mathrm{ft}$ Circulation rate $=350 \mathrm{gpm} \quad$ Drill pipe ID $=4.276$ in.

$$
\mathrm{P}=\frac{0.000061 \times 10.9 \times 6500 \times(350)^{1.86}}{4.276^{4.86}}
$$

$\mathrm{P}=4.32185 \times 53946.909$
1166.3884
$\mathrm{P}=199.89 \mathrm{psi}$

Annular Pressure Losses

$$
\mathrm{P}=\frac{\left(1.4327 \times 10^{-7}\right) \times \mathrm{MW} \mathrm{x} \mathrm{Lx} \mathrm{~V}}{}{ }^{2}
$$

where $\mathrm{P}=$ annular pressure losses, psi
MW = mud weight, ppg
$\mathrm{L}=$ length, ft
$\mathrm{V}=$ annular velocity, $\mathrm{ft} / \mathrm{mm}$
$\mathrm{Dh}=$ hole or casing ID, in.
Dp = drill pipe or drill collar OD, in.
Example: Mud weight $=12.5 \mathrm{ppg}$ Length $=6500 \mathrm{ft}$
Circulation rate $=350 \mathrm{gpm} \quad$ Hole size $=8.5 \mathrm{in}$.
Drill pipe OD $=5.0 \mathrm{in}$.
Determine annular velocity, $\mathrm{ft} / \mathrm{mm}$:

$$
\begin{aligned}
& \mathrm{v}=\frac{24.5 \times 350}{8.5^{2}-5.0^{2}} \\
& \mathrm{v}=\frac{8575}{47.25} \\
& \mathrm{v}=181 \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

Determine annular pressure losses, psi: $\quad \mathrm{P}=\frac{\left(1.4327 \times 10^{-7} \times 12.5 \times 6500 \times 181^{2}\right.}{8.5-5.0}$

$$
\begin{aligned}
& \mathrm{P}=\frac{381.36}{3.5} \\
& \mathrm{P}=108.96 \mathrm{psi}
\end{aligned}
$$

Pressure Loss Through Common Pipe Fittings

$$
\mathrm{P}=\frac{\mathrm{Kx} \mathrm{MW} \mathrm{x} \mathrm{Q}}{}{ }^{2}
$$

where $\mathrm{P}=$ pressure loss through common pipe fittings
$\mathrm{K}=$ loss coefficient (See chart below)
A = area of pipe, sq in.
$\mathrm{Q}=$ circulation rate, gpm

List of Loss Coefficients (K)

$K=0.42$ for 45 degree ELL
$\mathrm{K}=0.90$ for 90 degree ELL
$\mathrm{K}=1.80$ for tee
$\mathrm{K}=2.20$ for return bend
$\mathrm{K}=0.19$ for open gate valve $\mathrm{K}=0.85$ for open butterfly valve

Example: $\mathrm{K}=0.90$ for 90 degree ELL
$\mathrm{MW}=8.33 \mathrm{ppg}$ (water)
$\mathrm{Q}=100 \mathrm{gpm}$
A $=12.5664$ sq. in. (4.0 in. ID pipe)
$P=\underline{0.90 \times 8.33 \times 1002}$
$12,031 \times 12.56642$
$\mathrm{P}=\underline{74970}$
1899868.3
$\mathrm{P}=0.03946 \mathrm{psi}$

Minimum Flow-rate for PDC Bits

Minimum flow-rate, $\mathrm{gpm}=12.72 \mathrm{x}$ bit diameter, in. ${ }^{1.47}$
Example: Determine the minimum flow-rate for a 12-1/4 in. PDC bit:
Minimum flow-rate, $\mathrm{gpm}=12.72 \times 12.25^{1.47}$
Minimum flow-rate, $\mathrm{gpm}=12.72 \times 39.77$
Minimum flow-rate $\quad=505.87 \mathrm{gpm}$

Critical RPM: RPM to Avoid Due to Excessive Vibration (Accurate to Approximately 15\%)

Critical $\mathrm{RPM}=\frac{33055}{\mathrm{~L}, \mathrm{ft}^{2}} \times \sqrt{\mathrm{OD}, \mathrm{in}^{2}{ }^{2}+\mathrm{ID}, \mathrm{in}^{2}{ }^{2}}$
Example: L = length of one joint of drill pipe $=31 \mathrm{ft}$
$\mathrm{OD}=$ drill pipe outside diameter $=5.0 \mathrm{in}$.
ID = drill pipe inside diameter $\quad=4.276 \mathrm{in}$.

Critical RPM $=\underline{33055} \times \sqrt{512} \times 0^{2}+4.276^{2}$
312
Critical $R P M=\frac{33055}{961} \times \sqrt{43.284}$
961

Critical RPM $=34.3965 \times 6.579$
Critical RPM $=226.296$
NOTE: As a rule of thumb, for 5.0 in. drill pipe, do not exceed 200 RPM at any depth.

References

Adams, Neal and Tommy Charrier, Drilling Engineering: A Complete Well Planning Approach, PennWell Publishing Company, Tulsa, 1985.
Chenevert, Martin E., and Reuven Hollo, TI-59 Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1981.
Christmafl, Stan A., "Offshore Fracture Gradients," JPT, August 1973.
Craig, J. T. and B. V. Randall, "Directional Survey Calculations," Petroleum Engineer, March 1976.

Crammer Jr., John L., Basic Drilling Engineering Manual, PennWell Publishing Company, Tulsa, 1982.
Eaton, B. A., "Fracture Gradient Prediction and Its Application in Oilfield Operations," JPT, October, 1969.
Jordan, J. R., and 0. J. Shirley, "Application of Drilling Performance Data to Overpressure Detection," JPT, Nov. 1966.
Kendal, W. A., and W. C. Goins, "Design and Operations of Jet Bit Programs for Maximum Hydraulic Horsepower, Impact Force, or Jet Velocity", Transactions of AIME, 1960.
Matthews, W. R. and J. Kelly, "How to Predict Formation Pressure and Fracture Gradient," Oil and Gas Journal, February 20, 1967.
Moore, P. L., Drilling Practices Manual, PennWell Publishing Company, Tulsa, 1974.
Mud Facts Engineering Handbook, Milchem Incorporated, Houston, Texas, 1984.
Rehm, B. and R. McClendon, "Measurement of Formation Pressure from Drilling Data," SPE Paper 3601, AIME Annual fall Meeting, New Orleans, La., 1971.
Scott, Kenneth F., "A New Practical Approach to Rotary Drilling Hydraulics," SPE Paper No. 3530, New Orleans, La., 1971.

APPENDIX A

Table A-1
CAPACITY AND DISPLACEMENT
(English System)
DRILL PIPE

Size OD in.	Size ID in.	WEIGHT lb/ft	CAPACITY bbl/ft	DISPLACEMENT bbl/ft
$2-3 / 8$	1.815	6.65	0.01730	0.00320
$2-7 / 8$	2.150	10.40	0.00449	0.00354
$3-1 / 2$	2.764	13.30	0.00742	0.00448
$3-1 / 2$	2.602	15.50	0.00658	0.00532
4	3.340	14.00	0.01084	0.00471
$4-1 / 2$	3.826	16.60	0.01422	0.00545
$4-1 / 2$	3.640	20.00	0.01287	0.00680
5	4.276	19.50	0.01766	0.00652
5	4.214	20.50	0.01730	0.00704
$5-1 / 2$	4.778	21.90	0.02218	0.00721
$5-1 / 2$	4.670	24.70	0.02119	0.00820
$5-9 / 16$	4.859	22.20	0.02294	0.00712
$6-5 / 8$	5.9625	25.20	0.03456	0.00807

Table A-2
HEAVY WEIGHT DRILL PIPE AND DISPLACEMENT

Size OD in.	Size ID in.	WEIGHT lb/ft	CAPACITY $\mathbf{b b l / f t}$	DISPLACEMENT $\mathbf{b b l / f t}$
$3-1 / 2$	2.0625	25.3	0.00421	0.00921
4	2.25625	29.7	0.00645	0.01082
$4-1 / 2$	2.75	41.0	0.00743	0.01493
5	3.0	49.3	0.00883	0.01796

Additional capacities, $\mathrm{bbl} / \mathrm{ft}$, displacements, $\mathrm{bbl} / \mathrm{ft}$ and weight, $\mathrm{lb} / \mathrm{ft}$ can be determined from the following:

Capacity, $\mathrm{bbl} / \mathrm{ft}=\frac{\mathrm{ID}, \mathrm{in.}^{2}}{1029.4}$
Displacement, $\mathrm{bbl} / \mathrm{ft}=\underline{\mathrm{Dh}, \mathrm{in} .-\mathrm{Dp}, \text { in. }{ }^{2}}$
1029.4

Weight, lb/ft = Displacement, bbl/ft x 2747 lb/bbl

Table A-3
CAPACITY AND DISPLACEMENT
(Metric System)
DRILL PIPE

Size OD in.	Size ID in.	WEIGHT lb/ft	CAPACITY ltrs/ft	DISPLACEMENT ltrs/ft
$2-3 / 8$	1.815	6.65	1.67	1.19
$2-7 / 8$	2.150	10.40	2.34	1.85
$3-1 / 2$	2.764	13.30	3.87	2.34
$3-1 / 2$	2.602	15.50	3.43	2.78
4	3.340	14.00	5.65	2.45
$4-1 / 2$	3.826	16.60	7.42	2.84
$4-1 / 2$	3.640	20.00	6.71	3.55
5	4.276	19.50	9.27	3.40
5	4.214	20.50	9.00	3.67
$5-1 / 2$	4.778	21.90	11.57	3.76
$5-1 / 2$	4.670	24.70	11.05	4.28
$5-9 / 16$	4.859	22.20	11.96	3.72
$6-5 / 8$	5.965	25.20	18.03	4,21

Table A-4
DRILL COLLAR CAPACITY AND DISPLACEMENT

Capacity			13/4"	2 '	21/4"	21/2"	23/4"	$3{ }^{\prime}$	31/4"	31/2"	33/4"	4"	41/4"
		. 0022	. 0030	. 0039	. 0049	. 0061	. 0073	. 0087	. 0103	. 0119	. 0137	. 0155	. 0175
OD	\#/ft	36.7	34.5	32.0	29.2								
4 "	Disp.	. 0133	. 0125	. 0116	. 0106								
$41 / 4 "$	\#/ft	34.7	42.2	40.0	37.5								
	Disp.	. 0126	. 0153	. 0145	. 0136								
41/2"	\#/ft	48.1	45.9	43.4	40.6								
	Disp.	. 0175	. 0167	. 0158	. 0148								
43/4"	, \#/ft	54.3	52.1	49.5	46.8	43.6							
	Disp.	. 0197	. 0189	. 0180	. 0170	. 0159							
5"	\#/ft	60.8	58.6	56.3	53.3	50.1							
	Disp.	. 0221	. 0213	. 0214	. 0194	. 0182							
51/4"	, $/ \mathrm{ft}$	67.6	65.4	62.9	60.1	56.9	53.4						
	Disp.	. 0246	. 0238	. 0229	. 0219	. 0207	. 0194						
51/2"	\#/ft	74.8	72.6	70.5	67.3	64.1	60.6	56.8					
	Disp.	. 0272	. 0264	. 0255	. 0245	. 0233	. 0221	. 0207					
53/4"	, \#/ft	82.3	80.1	77.6	74.8	71.6	68.1	64.3					
	Disp.	. 0299	. 0291	. 0282	. 0272	. 0261	. 0248	. 0234					
6"	\#/ft	90.1	87.9	85.4	82.6	79.4	75.9	72.1	67.9	63.4			
	Disp.	. 0328	. 0320	. 0311	. 0301	. 0289	. 0276	. 0262	. 0247	. 0231			
61/4"	\#/ft	98.0	95.8	93.3	90.5	87.3	83.8	80.0	75.8	71.3			
	Disp.	. 0356	. 0349	. 0339	. 0329	. 0318	. 0305	. 0291	. 0276	. 0259			
61/2"	\#/ft	107.0	104.8	102.3	99.5	96.3	92.8	89.0	84.8	80.3			
	Disp.	. 0389	. 0381	. 0372	. 0362	. 0350	. 0338	. 0324	. 0308	. 0292			
63/4"	, \#/ft	116.0	113.8	111.3	108.5	105.3	101.8	98.0	93.8	89.3			
	Disp.	. 0422	. 0414	. 0405	. 0395	. 0383	. 0370	. 0356	. 0341	. 0325			
7"	\#/ft	125.0	122.8	120.3	117.5	114.3	110.8	107.0	102.8	98.3	93.4	88.3	
	Disp.	. 0455	. 0447	. 0438	. 0427	. 0416	. 0403	. 0389	. 0374	. 0358	. 0340	. 0321	
71/4"	, $/ \mathrm{ft}$	134.0	131.8	129.3	126.5	123.3	119.8	116.0	111.8	107.3	102.4	97.3	
	Disp.	. 0487	. 0479	. 0470	. 0460	. 0449	. 0436	. 0422	. 0407	. 0390	. 0372	. 0354	
$71 / 2 "$, \#/ft	144.0	141.8	139.3	136.5	133.3	129.8	126.0	121.8	117.3	112.4	107.3	
	Disp.	. 0524	. 0516	. 0507	. 0497	. 0485	. 0472	. 0458	. 0443	. 0427	. 0409	. 0390	
73/4"	, \#/ft	154.0	151.8	149.3	146.5	143.3	139.8	136.0	131.8	127.3	122.4	117.3	
	Disp.	. 0560	. 0552	. 0543	. 0533	. 0521	. 0509	. 0495	. 0479	. 0463	. 0445	. 0427	
8"	\#/ft	165.0	162.8	160.3	157.5	154.3	150.8	147.0	142.8	138.3	133.4	123.3	122.8
	Disp.	. 0600	. 0592	. 0583	. 0573	. 0561	. 0549	. 0535	. 0520	. 0503	. 0485	. 0467	. 0447
81/4"	\#/ft	176.0	173.8	171.3	168.5	165.3	161.8	158.0	153.8	149.3	144.4	139.3	133.8
	Disp.	. 0640	. 0632	. 0623	. 0613	. 0601	. 0589	. 0575	. 0560	. 0543	. 0525	. 0507	. 0487
81/2"	\#/ft	187.0	184.8	182.3	179.5	176.3	172.8	169.0	164.8	160.3	155.4	150.3	144.8
	Disp.	. 0680	. 0672	. 0663	. 0653	. 0641	. 0629	. 0615	. 0600	. 0583	. 0565	. 0547	. 0527
83/4"	, \#/ft	199.0	106.8	194.3	191.5	188.3	194.8	181.0	176.8	172.3	167.4	162.3	156.8
	Disp.	. 0724	. 0716	. 0707	. 0697	. 0685	. 0672	. 0658	. 0613	. 0697	. 0609	. 0590	. 0570
$9 "$	\#/ft	210.2	268.0	205.6	202.7	199.6	196.0	192.2	188.0	183.5	178.7	173.5	168.0
	Disp.	. 0765	. 0757	. 0748	. 0738	. 0726	. 0714	. 0700	. 0685	. 0668	. 0651	. 0632	. 0612
$10^{\prime \prime}$	\#/ft	260.9	258.8	256.3	253.4	250.3	246.8	242.9	238.8	234.3	229.4	224.2	118.7
	Disp.	. 0950	. 0942	. 0933	. 0923	. 0911	. 0898	. 0884	. 0869	. 0853	. 0835	. 0816	. 0796

1. Tank Capacity Determinations

Rectangular Tanks with Flat Bottoms

Volume, $\mathrm{bbl}=$ length, ft x width, ft x depth, ft 5.61

Example 1: Determine the total capacity of a rectangular tank with flat bottom using the following data:

Length $=30 \mathrm{ft} \quad$ Width $=10 \mathrm{ft} \quad$ Depth $=8 \mathrm{ft}$
Volume, $\mathrm{bbl}=\underline{30 \mathrm{ft} \mathrm{x} 10 \mathrm{ft} \times 8 \mathrm{ft}}$

$$
5.61
$$

Volume, $\mathrm{bbl}=\underline{2400}$

$$
\overline{5.61}
$$

Volume $=427.84 \mathrm{bbl}$
Example 2: Determine the capacity of this same tank with only $5-1 / 2 \mathrm{ft}$ of fluid in it:
Volume, $\mathrm{bbl}=\underline{30 \mathrm{ft} \times 10 \mathrm{ft} \times 5.5 \mathrm{ft}}$ 5.61

Volume, $\mathrm{bbl}=\underline{1650}$

$$
5.61
$$

Volume $=294.12 \mathrm{bbl}$

Rectangular Tanks with Sloping Sides:

SIDE

Volume bbl — length, $\mathrm{ft} \times$ [depth, ft (width, + width $_{2}$)]

$$
5.62
$$

Example: Determine the total tank capacity using the following data:
Length $=30 \mathrm{ft}$ Width, (top) $=10 \mathrm{ft}$ Depth $=8 \mathrm{ft} \quad$ Width $_{2}($ bottom $)=6 \mathrm{ft}$

Volume, $\mathrm{bbl}=\underline{30 \mathrm{ft} \times[8 \mathrm{ft} \mathrm{x}(10 \mathrm{ft}+6 \mathrm{ft})]}$ 5.62

Volume, $\mathrm{bbl}=\underline{30 \mathrm{ft} \times 128}$
5.62

Volume $=683.3 \mathrm{bbl}$

Circular Cylindrical Tanks:

side

Volume, $\mathrm{bbl}=\underline{3.14 \times \mathrm{r}^{2} \times \text { height, } \mathrm{ft}}$ 5.61

Example: Determine the total capacity of a cylindrical tank with the following dimensions:

$$
\text { Height }=15 \mathrm{ft} \quad \text { Diameter }=10 \mathrm{ft}
$$

NOTE: The radius (r) is one half of the diameter: $r=\frac{10}{2}=5$
Volume, $\mathrm{bbl}=\frac{3.14 \times 5 \mathrm{ft}^{2} \times 15 \mathrm{ft}}{5.61}$
Volume bbl $=\underline{1177.5}$

Volume $=209.89 \mathrm{bbl}$

Tapered Cylindrical Tanks:

a) Volume of cylindrical section: $\quad \mathrm{Vc}=0.1781 \times 3.14 \times \mathrm{Rc}^{2} \times \mathrm{Hc}$
b) Volume of tapered section: $\quad \mathrm{Vt}=0.059 \times 3.14 \times \mathrm{Ht} \times\left(\mathrm{Rc}^{2}+\mathrm{Rb}^{2}+\mathrm{Rb} \mathrm{Rc}\right)$
where $\mathrm{Vc}=$ volume of cylindrical section, $\mathrm{bbl} \quad \mathrm{Rc}=$ radius of cylindrical section, ft
$\mathrm{Hc}=$ height of cylindrical section, $\mathrm{ft} \quad \mathrm{Vt}=$ volume of tapered section, bbl
$\mathrm{Ht}=$ height of tapered section, $\mathrm{ft} \quad \mathrm{Rb}=$ radius at bottom, ft
Example: Determine the total volume of a cylindrical tank with the following dimensions:
Height of cylindrical section $=5.0 \mathrm{ft} \quad$ Radius of cylindrical section $=6.0 \mathrm{ft}$
Height of tapered section $=10.0 \mathrm{ft}$ Radius at bottom $=1.0 \mathrm{ft}$
Solution:
a)Volume of the cylindrical section: $\quad \mathrm{Vc}=0.1781 \times 3.14 \times 6.02 \times 5.0$

$$
\mathrm{Vc}=100.66 \mathrm{bbl}
$$

b) Volume of tapered section:

$$
\begin{aligned}
& \mathrm{Vt}=0.059 \times 3.14 \times 10 \mathrm{ft} \times\left(6^{2}+1^{2}+1 \times 6\right) \\
& \mathrm{Vt}=1.8526(36+1+6) \\
& \mathrm{Vt}=1.8526 \times 43 \\
& \mathrm{Vt}=79.66 \mathrm{bbl}
\end{aligned}
$$

c) Total volume:

$$
\begin{aligned}
\mathrm{bbl} & =100.66 \mathrm{bbl}+79.66 \mathrm{bbl} \\
\mathrm{bbl} & =180.32
\end{aligned}
$$

Horizontal Cylindrical Tank:

a) Total tank capacity: \quad Volume, $\mathrm{bbl}=\frac{3.14 \times \mathrm{r}^{2} \times \mathrm{L}(7.48)}{42}$
b) Partial volume;

Vol. $\mathrm{ft}^{3}=\mathrm{L}\left[0.017453 \times \mathrm{r}^{2} \times \cos ^{-1}(\mathrm{r}-\mathrm{h} \div \mathrm{r})-\mathrm{sq} . \operatorname{root}\left(2 \mathrm{hr}-\mathrm{h}^{2}(\mathrm{r}-\mathrm{h})\right)\right]$
Example I: Determine the total volume of the following tank;
Length $=30 \mathrm{ft} \quad$ Radius $=4 \mathrm{ft}$
a) Total tank capacity;

Volume, $\mathrm{bbl}=\frac{3.14 \times 42^{2} \times 30 \times 7.48}{48}$
Volume, $\mathrm{bbl}=\frac{11273.856}{48}$
Volume $=234.87 \mathrm{bbl}$

Example 2: Determine the volume if there are only 2 feet of fluid in this tank; ($\mathrm{h}=2 \mathrm{ft}$)
Volume, $\mathrm{ft}^{3}=30\left[0.017453 \times 4^{2} \times \cos ^{-1}(4-(2 \div 4))-\right.$ sq. root $\left.\left(2 \times 2 \times 4-2^{2}\right) \times(4-2)\right]$
Volume, $\mathrm{ft}^{3}=30\left[0.279248 \times \cos ^{-1}(0.5)-\right.$ sq. root $\left.12 x(2)\right]$
Volume, $\mathrm{ft}^{3}=30(0.279248 \times 60-3.464 \times 2)$
Volume, $\mathrm{ft}^{3}=30 \times 9.827$
Volume $=294 \mathrm{ft}^{3}$
To convert volume, ft^{3}. to barrels, multiply by 0.1781 .
To convert volume, ft^{3}, to gallons, multiply by 7.4805.
Therefore, 2 feet of fluid in this tank would result in;
Volume, bbl $=294 \mathrm{ft}^{3} \times 0.1781$
Volume $=52.36 \mathrm{bbl}$
NOTE: This is only applicable until the tank is half full $(\mathrm{r}-\mathrm{h})$. After that, calculate total volume of the tank and subtract the empty space.
The empty space can be calculated by $\mathrm{h}=$ height of empty space.

APPENDIX B

Conversion Factors

TO CONVERT FROM	TO	MULTIPLY BY
	Area	
Square inches	Square centimetres	6.45
Square inches	Square millimetres	$645+2$
Square centimetres	Square inches	0.155
Square millimetres	Square inches	1.55×10^{-3}

Circulation Rate

Barrels $/ \mathrm{min}$	Gallons $/ \mathrm{min}$	42.0
Cubic feet $/ \mathrm{min}$	Cubic meters $/ \mathrm{sec}$	4.72×10^{-4}
Cubic feet $/ \mathrm{min}$	Gallons $/ \mathrm{min}$	7.48
Cubic feel $/ \mathrm{mm}$	Litres $/ \mathrm{min}$	28.32
Cubic meters $/ \mathrm{sec}$	Gallons $/ \mathrm{min}$	15850
Cubic meters $/ \mathrm{sec}$	Cubic feet $/ \mathrm{min}$	2118
Cubic meters $/ \mathrm{sec}$	Litres $/ \mathrm{min}$	60000
Gallons $/ \mathrm{min}$	Barrels $/$ ruin	0.0238
Gallons $/ \mathrm{min}$	Cubic feet $/ \mathrm{min}$	0.134
Gallons $/ \mathrm{min}$	Litres $/ \mathrm{min}$	3.79
Gallons $/ \mathrm{min}$	Cubic meters $/ \mathrm{sec}$	6.309×10^{-5}
Litres $/ \mathrm{min}$	Cubic meters $/ \mathrm{sec}$	1.667×10^{-5}
Litres $/ \mathrm{min}$	Cubic feet $/ \mathrm{min}$	0.0353
Litres $/ \mathrm{min}$	Gallons $/ \mathrm{min}$	0.264

Impact Force

Pounds	Dynes	4.45×10^{-5}
Pounds	Kilograms	0.454
Pounds	Newtons	4.448
Dynes	Pounds	2.25×10^{-6}

TO CONVERT FROM	TO	MULTIPLY BY
Kilograms	Pounds	2.20
Newtons	Pounds	0.2248
	Length	
Feet	Meters	0.305
Inches	Millimetres	25.40
Inches	Centimetres	2.54
Centimetres	Inches	0.394
Millimetres	Inches	0.03937
Meters	Feet	3.281

Mud Weight

Pounds/gallon	Pounds/cu ft	7.48
Pounds/gallon	Specific gravity	0.120
Pounds/gallon	Grams/cu cm	0.1198
Grams/cu cm	Pounds/gallon	8.347
Pounds/cu ft	Pounds/gallon	0.134
Specific gravity	Pounds/gallon	8.34

Power

Horsepower	Horsepower (metric)	1.014
Horsepower	Kilowatts	0.746
Horsepower	Foot pounds/sec	550
Horsepower (metric)	Horsepower	0.986
Horsepower (metric)	Foot pounds/sec	542.5
Kilowatts	Horsepower	1.341
Foot pounds/sec	Horsepower	0.00181

Pressure

Atmospheres	Pounds/sq. in.	14.696
Atmospheres	Kgs/sq. cm	1.033
Atmospheres	Pascals	1.013×10^{5}
Kilograms/sq. cm	Atmospheres	0.9678
Kilograms/sq. cm	Pounds/sq. in.	14.223
Kilograms/sq. cm	Atmospheres	0.9678
Pounds/sq. in.	Atmospheres	0.680
Pounds/sq. in.	Kgs/sq. cm	0.0703
Pounds/sq. in.	Pascals	6.894×10^{-3}

TO CONVERT FROM	TO	MULTIPLY BY
Velocity		
Feet/sec	Meters/sec	0.305
Feet/mm	Meters/sec	5.08×10^{-3}
Meters/sec	Feet/mm	196.8
Meters/sec	Feet/sec	3.28
Volume		
Barrels	Gallons	42
Cubic centimetres	Cubic feet	3.531×10^{-3}
Cubic centimetres	Cubic inches	0.06102
Cubic centimetres	Cubic meters	10^{-6}
Cubic centimetres	Gallons	2.642×10^{-4}
Cubic centimetres	Litters	0.001
Cubic feet	Cubic centimetres	28320
Cubic feet	Cubic inches	1728
Cubic feet	Cubic meters	0.02832
Cubic feet	Gallons	7.48
Cubic feet	Litters	28.32
Cubic inches	Cubic centimetres	16.39
Cubic inches	Cubic feet	5.787×10^{-4}
Cubic inches	Cubic meters	1.639×10^{-5}
Cubic inches	Gallons	4.329×10^{-3}
Cubic inches	Litres	0.01639
Cubic meters	Cubic centimetres	10^{6}
Cubic meters	Cubic feet	35.31
Cubic meters	Gallons	264.2
Gallons	Barrels	0.0238
Gallons	Cubic centimetres	3785
Gallons	Cubic feet	0.1337
Gallons	Cubic inches	231
Gallons	Cubic meters	3.785×10^{-4}
Gallons	Litres	3.785
Weight		
Pounds	Tons (metric)	4.535×10^{-4}
Tons (metric)	Pounds	2205
Tons (metric)	Kilograms	1000

Accumulator

capacity-surface system, 30
capacity-subsea system, 31
pre-charge pressure, 31,32
Annular capacity
between casing or hole and drill pipe, tubing, or $\quad 11,12$
casing,
between casing and multiple strings of tubing, $\quad 12,13,14$
Annular velocity
critical,
130, 131
determine,
pump output required,
9
spm required, 10
Bit nozzle selection,
Bottomhole assembly length necessary for a desired weight
$125,126,127,128$
on bit,
Buoyancy factor,
33, 34

Capacity
annular,
11, 12
inside,
$14,15,20,21$
Cementing calculations
additive calculations,
37, 38
balanced cement plug,
common cement additives,
differential pressure,
number of feet to be cemented,
sacks required,
water requirements,
weighted cement calculations,
$47,48,49,50$
40, 41
50, 51
45, 46, 47
43, 44, 45
$38,39,40,41$
42
Centrifuge
evaluation,
$77,78,79,80$
Cost per foot, 23
Cuttings
amount drilled, $\quad 15,16$
bulk density,
slip velocity,
32
Control drilling, 16

Conversion factors

area, 164
circulation rate, 164
impact force, 164
length, 165
mud weight, 165
power, 165
pressure, 165
velocity, 166
volume, 166
weight, 166
"d" exponent,
Density - equivalent circulating, Directional drilling
available weight on bit,
deviation/departure,
dogleg severity, survey calculations, true vertical depth,
Displacement - drill collar,
Diverter lines,
Drilling fluids
dilution,
increase density, volume increase, starting volume,
oil based muds changing o / w ratio,
oil based muds density of mixture,
oil based muds starting volume to prepare,
mixing fluids of different densities,
Drill collar - capacity and displacement,
Drill pipe - capacity and displacement,
Drill pipe - heavy weight,
Drill string - critical RPM,
Drill string - design,
Equivalent mud weight,
Flow-rate
minimum for PDC bits, 154
Fracture gradient
Ben Eaton method,
Matthews and Kelly method,
subsea applications,
Gas migration,
Hydraulic horsepower,
Hydraulics analysis,
Hydraulicing casing,
Hydrocyclone evaluation,
144, 145
142, 143, 144
145, 146, 147
Hydrostatic pressure decrease
gas cut mud,
tripping pipe,
Kick - maximum pressure when circulating,
Kick - maximum pit gain,
Kick - maximum surface pressure,
Leak-off test,
maximum allowable mud weight from,
MASICP,
101, 102
20
128, 129, 130
51, 52, 53, 54
77
102
17, 18
103, 104, 105, 106, 107
103
102, 103
7, 94, 95, 96
96
96
Overbalance - loss of, 19
Overbalance - lost returns, 55

Pressure
adjusting pump rate, 22
analysis gas expansion, 108
breaking circulation, $\quad 61,62$
drill stem tests surface pressures, 108, 109
gradient - determine, 4
gradient - convert, 4
hydrostatic - determine, $\quad 4,5$
hydrostatic - convert, $\quad 4,5,6$
maximum anticipated surface, $\quad 92,93,94$
pressure exerted by mud in casing, 108, 109
tests,
94, 95, 96
Pressure losses - annular,
153, 154
Pressure losses - drill stem bore, 152
Pressure losses - pipe fittings, 154, 155
Pressure losses - surface equipment, 152, 155
Pump output - Duplex, 8
Pump output - Triplex, 7,8
Slug calculations, 27,28,29
Specific gravity - determine, 6
Specific gravity - convert, 6,7
Solids analysis,
dilution,
displacement, 77
fractions, 75
generated, $\quad 15,16$
Stripping/snubbing
breakover point, 110
casing pressure increase from stripping into influx, 111
height gain from stripping into influx, $\quad 111$
maximum allowable surface pressure, 112
maximum surface pressure before stripping, 111
volume of mud to bleed, $\quad 111,112$
Strokes to displace,
Stuck pipe - determining free point,
26, 27
56, 57, 58
Stuck pipe - height of spotting fluid,
Stuck pipe - spotting pills,
Surge and swab pressures,
58
59, 60, 61
$135,136,137,138,139,140$
Tank capacity determinations,
Temperature conversion,
160, 161, 162, 163
determine,
23, 24
Ton-mile calculations - coring operations, 36
Ton-mile calculations - drilling or connection, 36
Ton-mile calculations - setting casing, 36
Ton-mile calculations - round trip, 34, 35
Ton-mile calculations - short trip, 37
Volume annular, $\quad 26,27,82,83,85$
Volume drill string, $\quad 26,27,82,83,85$

Washout depth of,	54, 55
Weight - calculate lb/ft,	20, 21
Weight - maximum allowable mud,	7
Weight - rule of thumb,	21
Well control	
bottomhole pressure,	99
sizing diverter lines,	94
final circulating pressure,	83, 85
formation pressure maximum,	97
formation pressure shut-in on kick,	99
gas migration,	101, 102
influx - maximum height,	97, 98, 100, 101
influx - type,	101
kick - gas flow into wellbore,	107
kick - maximum pit gain,	103
kick - maximum surface pressure,	102, 103, 104, 105, 106, 107
kick tolerance - factor,	96, 97
kick tolerance - maximum surface pressure from,	97
kill sheets - normal,	82, 83, 84, 85, 86, 87, 88
kill sheets - tapered string,	88, 89
kill sheets - highly deviated well,	89, 90, 91, 92
kill weight mud,	83, 85
initial circulating pressure,	83, 85
maximum anticipated surface pressure,	92, 93, 94
MASICP,	96, 98
psi/stroke,	87
shut-in casing pressure,	100
shut-in drill pipe pressure,	99
subsea well control - BHP when circulating kick,	118, 119
subsea well control - bringing well on choke,	113
subsea well control - casing burst pressure, subsea well control - choke line - adjusting for higher	116
mud weight,	116
subsea well control - choke line - pressure loss,	115, 116
subsea well control - choke line - velocity through, subsea well control - maximum allowable mud	116
weight,	114
subsea well control - maximum allowable shut-in casing pressure, subsea well control - maximum mud weight with	114, 115
returns back to rig floor,	117
subsea well control - minimum conductor casing setting depth,	116, 117
subsea well control - riser disconnected,	117, 118
subsea well control - trip margin,	86
Workover operations - bullheading,	119, 120, 121
Workover operations - lubricate and bleed,	121, 122

